1 Comment

Ancient spiders from an ancient forest

20170528-IMG_20170528_175611_DRO

Ever wish you could travel back through time and see a west coast Vancouver Island rainforest before industrial logging? To see huge old trees, intact soils and life in a climax ecosystem? You do not have to invent a time machine, you only need to travel about an hour out of Port Renfrew to the spectacular Walbran Valley.

20170528-IMG_20170528_181230_DRO

As part of an effort to document the biodiversity of the valley, I traveled with fellow arachnologists Claudia Copley, Darren Copley, Zoe Lindo, and Catherine Scott, along with birders, mycologists, lichenologists and assorted volunteers to spend a day among the giant trees. We were there at the invitation of the Friends of Carmanah-Walbran to lend our expertise to the effort of catloguing the biodiversity of this beautiful, yet still at-risk west coast habitat.

We arrived at the somewhat storied “Bridge to Nowhere”, where in 1991 environmental protesters confronted the logging companies, the RCMP and the government of British Columbia, holding the line against industrial exploitation of a rare ecosystem. What the activists were asking for seems modest: Can’t we have just this one watershed, among all the others on Vancouver Island, be preserved and protected from the clearcutting and degradation that is the fate of every other valley on the Island?

20170528-IMG_00212. Pacheedaht elder Bill Jones walks across the Bridge to Nowhere

While the Friends of Carmanah-Walbran took the other participants deep into the woods on hikes, we arachnologists ventured only short distances into the woods, as our slow and careful sifting through the soil and beating of the bushes is certainly not a thrill ride for everyone. For us, however, it was thrilling, as within 30 minutes of arrival on site, we had found a beautiful and seemingly dense population of Hexura picea, a relative of tarantulas.

20170528-IMG_00803. Hexura picea, a tarantula relative, brought out of its underground silk tunnel complex for a photo shoot.

These little, pretty, but nondescript spiders live in small silk tunnel complexes among the soil and rocks of the forest floor. Each tunnel has a main entrance lined with silk, and several other openings which may facilitate rapid escape or offer alternate exits at which to snare prey. Being members of the suborder Mygalomorphae, they are indeed tarantula relatives, a group of spiders that closely resemble ancient spiders. Many mygalomorphs retain traces of segmentation on their abdomens, unlike the more modern araneomorph spiders. In the Mecicobothriidae (to which Hexura belongs) the terminal spinneret segments bear “pseudosegmentation”

IMG_0366

The section of forest we found this spider in was a real “tangled bank”, in fact the scree slope associated with Walbran creek and a small tributary, which has since been covered with a layer of soil and a stand of hardy trees.

20170528-IMG_00574. Erosion is a gentler process in a forested valley, with trees holding on to what would be a talus slope higher in the mountains. The soils beneath these trees support an extensive food web.

Finding these spiders in the Walbran was not unexpected, as they had previously been found in the Carmanah Valley and at Avatar Grove, but their presence on Vancouver Island is somewhat puzzling, as they represent the only known Canadian population, and are seemingly not present on the BC mainland.

Given the dense population in the Walbran, the valley would be an wonderful place to study their behaviour, which so far is undocumented. We would presume that much of the activity of these spiders takes place at night, although Catherine was able to lure one out of its burrow by tickling the silken doormat with a twig.

20170528-IMG_01115. Hexura picea emerges from its silken tunnel and onto its “doormat” to “kill” a vibrating cedar twig.

The litter sampling we conducted will surely yield many more species, although we have to wait until the Berlese funnels have extracted all of the arthropods. The work of sampling and cataloguing biodiversity takes time, and is not totally congruent with the rapid “bioblitz” ethos.

If you are ever in BC, and want a trip back in time (never mind our politics), please do not hesitate to come out to the Walbran Valley. You may just discover something amazing.

20170528-IMG_02486. Darren and Claudia picking up pan traps beside the Malaise flight-intercept trap.

 

 

 

 

Advertisements

Don’t read this article

I will admit that the headline was thoroughly and completely “click bait”. That’s because I was worried that “The new ESC Science Policy Committee and its mandate” would have you move along to the next article. And I hope that giving you the goods now on what this article is about doesn’t cause that right… now.

For those of you who are still with me, and I hope that is a majority of our members, I am aware that policy is not generally considered an exciting topic. But in this era of climate change, environmental degradation, increasing population pressure on our agricultural and silvicultural output, emergent and spreading vector-borne diseases, research funding challenges, and rapidly shifting politics in Canada and many of our largest trading partners, we as entomologists cannot merely sit back and let policy happen. We need to engage with policy makers to encourage careful decision making with the long view in mind.

Our diverse Society membership has an equally diverse set of skills and perspectives to offer to Canadians and the rest of the world. But engagement can only happen if we are willing to put fingers on the pulse of various issues, and to collaboratively marshal responses to issues as they begin to emerge. In other words, we can only be effective if we are able to anticipate in time and react with collective care and wisdom.

Over the past many years, the ESC has maintained a Science Policy and Education Committee. That committee has been effective in many areas including over the past several years:

  • expressing concern to the federal government about travel restrictions on federal scientists wishing to attend ESC meetings,
  • encouraging the continued support of the Experimental Lakes Area,
  • responding to NSERC consultations, and
  • drafting the ESC Policy Statement on Biodiversity Access and Benefit Sharing which was later adopted by our Society.

However, because the combination of both public education and public policy was a substantial and growing mandate, the ESC Executive Council Committee decided in 2015 to split the committee into two, each part taking care of one of the two former aspects.

In October 2016 I was asked to chair and help to formulate the new ESC Science Policy Committee. Your committee now consists of (in alphabetical order):

  • Patrice Bouchard (ESC First VP, Agriculture and Agri-Food Canada)
  • Crystal Ernst (appointed member, postdoctoral fellow at Simon Fraser University)
  • Neil Holliday, (ESC President, ex officio committee member, University of Manitoba)
  • Dezene Huber (appointed member as academic representative, Chair 2016/2017, University of Northern British Columbia)
  • Fiona Hunter (ESC Second VP, Brock University)
  • Rachel Rix (appointed member and student and early professional representative, Dalhousie University)
  • Amanda Roe (appointed member as government representative, Natural Resources Canada – Canadian Forest Service)

Each executive member’s term is specified by their ESC executive term. Each appointed member is a member for up to 3 years. The Chair position is appointed on a yearly basis. The terms of reference specify that the committee should contain members “who (represent) the Student (and Early Professional) Affairs Committee, and preferably one professional entomologist employed in government service and one employed in academia.

We are officially tasked “(t)o monitor government, industry and NGO science policies, to advise the Society when the science of entomology and our Members are affected, and to undertake tasks assigned by the Board that are designed to interpret, guide, or shift science policy.”

We are now working on putting together an agenda, and have started to work on a few items. For instance, you may recall an eBlast requesting participation in Canada’s Fundamental Science Review that was initiated by Hon. Kirsty Duncan, Minister of Science. We hope that some of you took the opportunity to send your thoughts to the federal government.

As we develop an agenda, we would like to consult with you, the ESC membership. Please tell us:

  • What policy-related issues do you see emerging in your area of study, your realm of employment, or in the place that you live?
  • How might the ESC Science Policy Committee integrate better with your concerns and those of the rest of the membership? 
  • How can our Society be more consultative and responsive to the membership and to issues as they arise?
  • Who are the people and organizations with which ESC should be working closely on science policy issues?
  • How can you be a part of science policy development, particularly as it relates to entomological practice and service in Canada and abroad?

 

Please email me at huber@unbc.ca with your thoughts, questions, and ideas. We know that many of you are already involved in this type of work, and we hope that we can act as synergists to your efforts and that you can help to further energize ours.

 

Dr. Dezene Huber

Chair, ESC Science Policy Committee

This article also appears in the March 2017 ESC Bulletin, Vol 48(1).

Entomologists wanted! It is time to renew your membership!

By Staffan Lindgren @bslindgren

Ever since childhood, I have been happiest crawling around turning over rocks, removing bark from stumps and inspecting every potential animal I can see. Early on, I was pretty much on my own, except for encouragement from my parents. At an early age, even before I reached teenage, I started joining various organizations that catered to likeminded geeks. Over the years, I have been involved in, or a member of literally dozens of such organizations. Central to my fascination has always been insects, and my dream was always to become an entomologist.

The first entomological society I joined was “Sveriges Entomologiska Förening” in Sweden. Because I grew up in a small northern town, I never really had the privilege of getting to know other members, and before I had much of a chance I was off to Canada. By then I had made some connections to Swedish entomologists through the professors, lecturers, and students of Umeå University, the Royal College of Forestry (now part of the Swedish University of Agricultural Sciences) and Uppsala University. I remained a member of SEF for some years, but once I knew that my planned return to Sweden was not going to happen, I gave that membership up in favour of the societies that I had joined and had closer connections with in North America. I have now been a member in good standing of the Entomological Society of Canada, ESBC, and ESA for more than 35 years, which is almost the entire time I have lived in Canada. I have served each of these societies in executive or other functions, most recently for four years on the executive of the ESC. Through these societies, I have gotten to know many colleagues who I now regard as friends as much as colleagues, I have established research collaborations, and gained a lot of knowledge that I would have missed by only reading what happened to be directly relevant to my own interests. In my opinion, I would not have had what little success I have enjoyed without my engagement in scientific society life.

Due to the unfortunate circumstances of my successor as President, I am currently Acting Past-President. One of my duties is to chair the Nominations Committee, which identifies individuals willing to put their name forward to serve on the ESC Governing Board (If you are interested in putting your name forward for 2nd Vice-President or Director-at-Large, PLEASE CONTACT ME!). In order to help me with this task, I requested a copy of the 2016 membership list. In going through the spreadsheet, I was rather disturbed at the absence of numerous individuals, some of whom have previously served important roles in promoting the ESC (you know who you are!). I know that it is easy to forget to pay the membership dues, but I have a feeling that the reasons for opting out are not always that simple. In the next week or so, memberships will expire, and it is time to once again contribute to your national and regional societies. I know that it seems like a lot of money, but if you think about it, we are talking about sums that are unlikely to break the bank of anyone. The ESC regular membership would be paid off by giving up about 60 cups of Tim Horton’s coffee or 30 cups of Starbucks special coffees. In other words,  you would have to forego only about 2-3 cups of Starbucks per month to save enough. It may not seem that supporting the ESC gives you much in return, but if the society is not supported, it would mean that the Canadian Entomologist (one of the oldest journals in the world), the Bulletin, and the Annual meetings would cease to exist. That also means that opportunities to mix with likeminded geeks become more expensive and less frequent. That would be a shame, wouldn’t it?

Please, go to the computer right now and join or renew as a member of the ESC (and whatever Regional Society that is close to you). The ESC needs your support, and I believe you will benefit from being part of the national entomological family of Canada. For me, it has been a privilege to be part of one of the most welcoming and inclusive group of people in science. Please join me!

_dsc5903

4 Comments

Leonard, the insects and me

 

leonard_cohen_2008

By Rama – Commons file, CC BY-SA 2.0 fr, https://commons.wikimedia.org/w/index.php?curid=53046764

 

Last winter, I spent a few months working on insect identifications for the BC Conservation Data Centre, mostly collections of insects made at newly-acquired conservation lands in the Okanagan and Kootenay regions of BC.

As I had no laboratory of my own, and no reference collections to work with, I was working out of the ROM, back behind Antonia Guidotti’s office in the entomology workroom. This place, in midwinter, is usually a little lonely, as Antonia has a lot of work to do all around the collection. And so mostly in solitude, I would sit there at my microscope,  stumbling through insect IDs, learning what I could about a vast array of taxa, and listening to an inordinate amount of Leonard Cohen’s music.

Somehow, I feel the mood of Leonard Cohen’s later works lends itself so well to solitary entomology pursuits. The consummate outsider, looking closely and inwardly at the human condition, and yet always so aware of a wider world, Leonard’s music has many parallels to sitting at a scope, baffled by Nature’s  diversity and wondering how it all fits together.

(As an aside, when I was going through scads of unfortunate, dead, trapped insects, the song “Who by Fire” seemed morbidly appropriate)

Occasionally, from the lab bench, I would reach out to the other folks online, sharing my discoveries through Twitter (the entomology workroom has a modest wireless connection!).

How excited I was, having lived in BC most my life to discover the wonderful piglet bug Bruchomorpha beameri, a wonderful fulgoroid planthopper that I had no idea even existed before taking this contract!

23791534796_13b7369fdf_o

It was heartening, sitting there alone, singing softly along to Leonard Cohen that people out there on Twitter responded so well to my excitement at discovering these treasures, and offering helpful advice. Terry Wheeler  was especially helpful when I was stumbling over some puzzling scathophagids from the Peace District.

20160121-IMG_9849.jpg

Connecting with people like Terry, who encouraged me through my ID struggles made me feel that despite being on the outer edges of my knowledge and what could reasonably be called paid employment in entomology, people cared about what I was doing and were there if I needed them.

With the help of Terry, Antonia, Laura Timms, Lu Musetti, and the great Leonard Cohen, I struggled my way through my contract, and my first eastern winter. Last week, Leonard Cohen died, leaving a huge hole in Canadian songwriting. We still have his recordings and poems to keep us company, though no matter what we are doing.

On Tuesday, I will head back to the ROM as a volunteer, to help sort out some of the ant collection, to the best of my ability. Perhaps I will listen to some of Leonard Cohen’s music, and tweet out some of what I find to connect me and my entomology work to the wider world.

 

 

 

A Nobel prize and the unknown benefits that come from saying yes

Aziz Sancar delivering his Nobel Lecture for his prize in Chemistry 2015. He said yes.

My early morning wakeup on Wednesday, October 7, 2015 began as usual with a, though admittedly not healthy, quick Twitter check. My internet-induced squint widened when I saw that Aziz Sancar was trending. Dr. Sancar had just been named co-winner of the Nobel prize in chemistry for his work on DNA repair mechanisms. Not at all surprised by the recognition of his career achievements, I was, however, flabbergasted because I actually know Aziz Sancar and in no small way, my career is what it is because of his generosity and kindness.

Twenty years ago, I was an MSc candidate studying the physiological ecology of amphibians at Trent University. At the time I was working with Michael Berrill on replicating and testing the findings of a 1994 PNAS paper by Andrew Blaustein and company. This was important work on declining amphibian populations in the Cascade Mountains. They found that these declining populations were characterised by low levels of a DNA repair enzyme called photolyase. This finding was intriguing because photolyase catalyses the repair of the principal form of damage to DNA from ultraviolet-b radiation. Because emerging ozone holes would result in natural populations experiencing an increased amount of UVB radiation, low levels of photolyase might be a “magic bullet” that explained which populations would be in decline in otherwise “pristine” areas.

Intriguing, but I was actually not ready to test it. With a potent combination of naïve enthusiasm, I figured I could simply contact the authors of the paper and ask them to teach me the methods that I needed to know to further their work. I tried email but could not find an address on the department website. So I phoned the Department of Biochemistry at the University of North Carolina at Chapel Hill. They explained that Dr. Sancar did not want or have an email address. I asked that the call be connected to his office. When he picked up the phone, I leapt immediately into my explanation that I was an MSc student from Trent University in Peterborough, Canada, and that I was hoping to visit his lab to learn methods of photolyase extraction that I would apply to my system. To my now weathered academic amazement, but, at the time, only to my joy, immediately and without hesitation, he said yes. If I could get myself to Chapel Hill, he would teach me what I needed to know.

Alex Smith with hair studying amphibian photolysase induction and concentration in the late 20th century.

Alex Smith with hair studying amphibian photolysase induction and concentration in the late 20th century.

So on my spring break of 1997, I rented a car (two cars actually – one died, another story) and drove from snowy Peterpatch to the flowering springtime of Chapel Hill, North Carolina to spend a week in Dr. Sancar’s lab. “Lab” didn’t quite cover it. Dr.’s Sancar (he and his wife, Dr. Gendolyn Sancar) had a floor of the building at UNC. Dr. Sancar met me on that Monday morning and arranged for a postdoc and a PhD student to help me all week and ensure that I could extract and purify the enzyme. He even arranged for another lab to give me some African clawed frog eggs to practice on! He met with me every day to see how I was progressing and answer any questions. I remember him encouraging me to take in a UNC NCAA women’s basketball game while in Chapel Hill (Tar Heels!), and I was very impressed that this academic superman was often watching soccer in his office when I arrived (the knockout phase of the UEFA Champions League, I think). A man of many interests! I left at the end of the week and proceeded to apply these methods successfully in my MSc. Three papers (Smith 2000, Smith et al 2000, and Smith et al 2002), eventually came from this project and one of the principal findings was that this enzymatic system could be induced in individuals from natural populations (previously not considered – and something that dramatically affects ones’ estimation of a populations’ photolyase level).

In my paper I was very critical of previous research – and not surprisingly, the manuscript received quite harsh and negative reviews. I had never written a response to reviewer comments before, and I did not craft them elegantly or with appreciation. Dr. Sancar was the editor at the journal handling the submission. He phoned me to suggest how I might better word my response. Connecting the phone call alone was no easy feat considering I was living in my car at the time, couch-surfing amongst friends on the west coast of North America – I’m still not sure how he managed to find me. But the advice was priceless and likely not something I would have come to on my own (let’s say it was something along the lines of…“I can hear that you’re angry by these comments, and they are not elegant – but you can’t say what you’ve said. What you mean is this……..so try expressing it like this….”). I was so appreciative, and now 20 years later I’m not sure I expressed my gratitude sufficiently.

And so, fast forward 20 years when I wake to read that the world has recognised Aziz Sancar for his pioneering work in the broad field of DNA repair. It made me think about the often unappreciated or unintended effects that saying yes can have on those around you.

At the end of his Nobel Lecture in Sweden in December 2015, Dr. Sancar showed a slide acknowledging his lab and colleagues. In part, these people and their output are the metrics that the Nobel committee evaluated in awarding him the prize. It was an impressive, but I knew not an exhaustive, list, for Dr. Sancar’s direct effect on my career – and indirectly then on all the students I have worked with in the subsequent years – was invisible to the Nobel committee (and perhaps not even remembered by Dr. Sancar). But these effects are significant and they came from a busy scientist saying yes when confronted with a naïve but enthusiastic student. There were many reasons for him to not take my call, not encourage me to come to North Carolina, not host me while I was there nor mentor me through the review process later on. But he did. He did say yes and it had an immeasurable effect.

I now work with insects in the neotropics and Canada on questions of biodiversity. I don’t work with photolyase and I don’t work as a physiological ecologist. However, by saying yes to me 20 years ago, Dr. Sancar’s act of generosity enabled me to follow this path. In the over-scheduled and busy lifestyle that we lead, it is important to consider this ripple that saying yes can have. There are many intended and measurable outcomes of supervision and mentoring – however there are many, perhaps more, unintended and important effects that kindness can have. As Anne Galloway said on Twitter, “We’re all smart – distinguish yourself by being kind”. The Nobel committee judged Dr. Sancar’s academic output worthy of its highest award last year. They were likely unaware of the affect that he has had in other scientific disciplines through his generosity and kindness.

 

I don’t think I said it clearly enough before. Thank you Dr. Sancar.

 

Dr. Alex Smith
Department of Integrative Biology,
University of Guelph

Joint Annual Meeting ESC-ESM 2017 – Winnipeg, MB

Yes, the International Congress of Entomology, which included the 2016 Entomological Society of Canada meeting contained within it, has just drawn to a close, but it’s never too early to start planning and preparing for the next ESC Annual Meeting!

So, in 2017, please accept the invitation of the Entomological Society of Manitoba to join entomologists from across the country in Winnipeg October 22-25 to share their, and your, entomological research and curiosity!

Official 2017 ESC-ESM Joint Annual Meeting Website

screen-shot-2016-10-03-at-10-35-21-pm screen-shot-2016-10-03-at-10-35-35-pm

BugsR4Girls – Applied entomology with a twist

By B. Staffan Lindgren (@bslindgren)

I have always thought of myself as extremely fortunate and blessed to have made a career in entomology. The main reason is that 99.9% of all entomologists I have met and come to know over the years have been extremely nice people. Like most entomologists, I was interested in animals (which in my case included insects and spiders) at a young age. Many of my friends probably considered me a bit odd, but that’s as far as it went as far as I recall. Unfortunately, that is not always the case as this story reveals.

The other day I (along with a large number of people on Twitter) got to witness this kindness in action in a way that warms my heart. Nicole Spencer, a concerned mother, sent a request to the Entomological Society of Canada (ESC) regarding her young daughter, Sophia, who happens to love insects and wants to become an entomologist when she grows up. Sophia’s interest has somehow led to teasing and outright bullying in school, however. Fortunately Sophia’s mom understands the importance of nurturing her daughter’s interest, as did my mother even though I kept spiders in jars in my bedroom. Nicole’s and Sophia’s heartfelt letter was passed on to Morgan Jackson (@BioInFocus), who promptly posted a tweet on behalf of the ESC (@CanEntomologist) asking entomologists to help out. This tweet, which displayed the letter, included the hashtag #BugsR4Girls, and it quickly went viral.

facebook-shareWithin a very short period, Morgan had amassed a list of 100+ people willing to assist, along with a number of additional offers from non-entomologists. An offer even came from celebrity Dominic Monaghan, British actor and host of the television program Wild Things with Dominic Monaghan. You can get the gist of it all from the Storify that Morgan put together. The huge response led to interest from media, and Sophia and her mom were featured on Buzzfeed Canada, where the whole story is revealed. It hasn’t ended there. Another media story came from LFPress, and Sophia’s story even made the front page of the Toronto Star! In addition, numerous tweets have been posted with or without the hashtag, and above I have reproduced 3 (but there are so many more that you really need to look for yourself). I also posted about this on my Facebook Page, and the story was shared by others there. The comments from this one really says it all!

I mentioned non-entomologists. Here is an open letter to Sophia (called Beatrix in the letter because the author didn’t know her name at the time) from a science communicator.bug-chicks

On the one hand this is a story about a little girl who has big dreams. On the other hand it is a story about the future of women in STEM. Sophia has dreams about becoming a scientist, but both she and her mother are uncertain of what possibilities are out there. Many other young children are in the same boat, I’m sure. But the journey starts at home with parents encouraging children to believe that they can be or do whatever they set their minds to. Last Friday I listened to a CBC Radio show with Maria Issa, a Canadian scientist who started in life just like Sophia by daydreaming and watching lady bugs. In spite of the odds being stacked high against her success, she made it, but many are discouraged, which later affects their self-confidence. My experience is that there is no gender difference in ability – in fact women mature sooner and are more focused than men IMHO. And the increasing number of brilliant female scientists in entomology is a case in point. Luckily for Sophia, she has an encouraging mother. Whether or not she becomes an entomologist is not the point. The point is that she believes in the possibility.

llavanerasFor me, Sophia’s story is a wonderful, multifaceted teachable moment. With all her new friends, Sophia will do just fine. I wish her all the luck in the world.

whiffin

3 Comments

Appreciating insects and other arthropods: a lifetime of riches

 

IMG_4978

It is about time I got busy and stared blogging again on this site. Since I am out of practice, I will do what I know best: a photo essay about why I love insects and other arthropods, and how studying them has improved my life!

IMG_4802

Ever since I was a young kid, I have loved getting out and seeing the animals nearby. When I was very young, my mom would send me in the backyard with a spoon and a yogurt container, so I could dig up, catch and watch the bugs I found. 

IMG_4767

In school, virtually all of my research reports and essays would be about insects, spiders, snakes and other animals. My love of insects became my pathway to learning.

IMG_4693

In university, I continued to indulge my love of insects and other animals, by taking any and all zoological courses offered. 

IMG_3971

Even when not studying, almost all the free time I get is spent outdoors, still looking for and watching insects, spiders and other animals. I really enjoy doing photography of what I find. 

IMG_4666

Taking photos of insects is a great way to explore their beauty, and to try to communicate that to others. In the pursuit of a good photograph, I learn a lot about the habits of local insects. 

IMG_4968

Now, I make a living studying animal behaviour. At the moment I am working with Catherine Scott studying spider behaviour at a local beach in Victoria BC. 

IMG_7038

We are studying black widows, one of the most beautiful and intriguing spiders. Of course I bring my camera along, to document the cool things we are learning about their behaviour!

IMG_6519

Studying insects and spiders is not only my job, it is what I most love to do. There is just so much to learn and explore. I think that getting out and experiencing the natural world this way is one of the most rewarding things someone of any age can do!

IMG_6937

Organizations like the Entomological Society of Canada, as well as the Entomological Society of Ontario, and the Toronto Entomologist’s Association form a community of people I can talk to and share my discoveries with. I highly recommend getting together with other insect lovers! Trading ideas and anecdotes and learning more together are some ways we can improve knowledge of insects and other arthropods.  

IMG_6974

OK! I have said my piece. I would welcome any other ESC members, or other entomologists out there to do likewise! What have you been doing this summer? What are some of the cool things you have seen? Share them with us here at the ESC blog!

 

 

1 Comment

Dangerous caterpillars

14318276970_1edbe8277b_h

The following is a guest post by Emma DesPland

Last week the CBC contacted me about an “infestation” of caterpillars near a local sports and community centre, citing parents’ concern that these could be dangerous for their children.

I was surprised.

The pine (Thaumetopoea pityocampa) and oak (T. processionea) processionary caterpillars do have a genuine claim to being a public health hazard: the later instars are covered with barbed setae containing an urticating toxin. These setae break off readily on contact and can even become airborne: if they lodge in the skin, they can cause a rash, but if they contact the eyes or throat the allergic response can be more serious.

Both are Mediterranean species that are expanding their range and causing concern in Northern Europe among people without prior experience.  Neither has been reported in North America.

There are several species of hairy caterpillars in Quebec: Eastern tent caterpillars, forest tent caterpillars, gypsy moth and woolly bears among the most common.   None have the allergenic properties of processionary caterpillars.

So what were these caterpillars invading the community centre? Forest tent caterpillars (Malacosoma disstria) and gypsy moth (Lymantria dispar).  Neither has any history of causing allergies or any other health consequences, except for possibly causing abortions in mares who eat large numbers of them.

121034832_15ad76f6ae_b

Gypsy moth caterpillar, one of the species found in the community centre. Photo by Brad Smith, used under terms of a Creative Commons BY-NC 2.0 Licence.

I have handled forest tent caterpillars for years, as have many other researchers, the students in my lab as well as my own children. We have also given hands-on science exhibits, in which countless other children have handled them. Fitzgerald’s classic 1995 book The Tent Caterpillars contains a chapter on “Maintaining Colonies and Suggestions for Classroom Activities”.  No-one to my knowledge has had an allergic reaction.

Does this mean that it is impossible that someone be allergic to the hairs on these caterpillars? Of course not, allergies are very diverse, widespread, complex and poorly understood.  Some people are allergic to laundry detergent, others to strawberries.

Are there any benefits to be gained by children handling caterpillars? First, it’s hard to stop them.  Children are curious and intrigued by the world around them, and caterpillars are ideal experimental subjects: they move and do interesting things, but not too fast.  They can be herded and driven across bridges, housed in jars and passed from one finger to the next, but never entirely controlled as they generally manage to escape somehow.  This kind of non-directed, curiosity-driven play is just the sort that develops scientific thinking. In addition, spending time with nature calms people, children and adults alike, and helps them recover from stress. Finally, conservation ethics – a feeling that the natural word is precious and deserves protection for its own sake – develops in childhood, through non-directed play in nature.  A type of play that is becoming less and less accessible for an increasing number of city-dwelling children.

Instilling fear of the natural world – fear of even something as cute, slightly ridiculous and totally innocuous-looking as a fuzzy caterpillar – cannot be a good way to go,  in a world that increasingly needs calm, unstressed people with conservation ethics.

1 Comment

Canadian Entomology Research Roundup: September 2015 – January 2016

(version française)

As part of a continuing series of Canadian Entomology Research Roundups, here’s what some Canadian entomology grad students have been up to lately:

From the authors:

Finn Hamilton (University of Victoria)

It is now well known that the majority of insects host symbiotic bacteria that have profound consequences for host biology. In some cases, these symbioses can protect hosts against virulent parasites and pathogens, although in most cases it remains unclear how symbionts achieve this defense. In this paper, we show that a strain of the bacterium Spiroplasma that protects its Drosophila host against a virulent nematode parasite encodes a protein toxin. This toxin appears to attack the nematode host during Spiroplasma-mediated defense, representing one of the clearest demonstrations to date of mechanisms underpinning insect defensive symbiosis. Article link

Drosophila

This is a Drosophila falleni fly infected by the nematode, Howardula aoronymphium, which Spiroplasma protects against. Photo credit: Finn Hamilton.

Lucas Roscoe (University of Toronto)

The Emerald Ash Borer (Agrilus planipennis Fairmaire, EAB) is a buprestid pest of ash trees in North America. As part of the development of long-term management plans for EAB, several projects detailing the biology and ecology of poorly-known, yet indigenous parasitoids associated with EAB were initiated. One project concerned the mating sequences of the chalcidid parasitoid, Phasgonophora sulcata Westwood. Many insects undertake repeatable actions prior to mating. These are commonly mediated by pheromones. The results of this research were the description of the mating sequence of P. sulcata, and evidence of female-produced pheromones that initiate these actions. Article link

sulcata

Phasgonophora sulcata, an important parasitoid of the emerald ash borer. Photo credit: Lucas Roscoe.

Marla Schwarzfeld (University of Alberta)

The parasitic wasp genus Ophion (Hymenoptera: Ichneumonidae) is almost entirely unknown in the Nearctic region, with the vast majority of species undescribed. In this study, we published the first molecular phylogeny of the genus, based on COI, ITS2, and 28S gene regions. While focusing on Nearctic specimens, we also included representatives of most known species from the western Palearctic region and several sequences from other geographical regions. We delimited 13 species groups, most recognized for the first time in this study. This phylogeny will provide an essential framework that will hopefully inspire taxonomists to divide and conquer (and describe!) new species in this morphologically challenging genus. Article link

Ophion

A parasitoid wasp in the genus Ophion. Photo credit: Andrea Jackson

Seung-Il Lee (University of Alberta)

Seung-Il Lee and his colleagues (University of Alberta) found that large retention patches (> 3.33 ha) minimize negative edge effects on saproxylic beetle assemblages in boreal white spruce stands. Article link    Blog post

beetle

A saproxylic beetle, Peltis fraterna. Photo credit: Seung-Il Lee.

Paul Abram (Université de Montréal)

The relationship between insect body size and life history traits (e.g. longevity, fecundity) has been extensively studied, but the additional effect of body size on behavioural traits is less well known. Using the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Platygastridae) and three of its stink bug host species as a model system, we showed that body size differences were associated with a change in a suite of not only life history parameters (longevity, egg load, egg size), but also several behavioural traits (walking speed, oviposition rate, host marking speed). Our results highlight how the entire phenotype (behaviour and life history) has to be considered when assessing associations between body size and fitness. Article link

Telenomus

The parasitoid Telenomus podisi parasitizing eggs of the stink bug Podisus maculiventris. Photo credit: Leslie Abram.

Delyle Polet (University of Alberta)

Insect wings often have directional roughness elements- like hairs and scales- that shed water droplets along the grain, but why are these elements not always pointing in the same direction? We proposed that three strategies are at play. Droplets should be (1) shed away from the body, (2) shed as quickly as possible and (3) forced out of “valleys” formed between wing veins. A mathematical model combining these three strategies fits the orientation of hairs on a March fly wing (Penthetria heteroptera) quite well, and could readily be applied to other species or bioinspired materials. Article link

Winghairs

Hairs on a March fly (Penthetria heteroptera) wing. Photo credit: Delyle Polet.

In-brief research summaries

Taxonomy, Systematics, and Morphology

Thomas Onuferko from the Packer Lab at York University and colleagues carried out an extensive survey of bee species in Niagara Region, Ontario. Onuferko et al. collected over 50 000 bees and discovered 30 species previously not recorded in the area. Article link

Christine Barrie and colleague report the Chloropidae flies associated with common reed (Phragmites) in Canada. Article link

 Behaviour and Ecology 

Blake Anderson (McMaster University) and colleagues investigates the decoupling hypothesis of social behaviour and activity in larval and adult fruit flies. Article link

Susan Anthony from the Sinclair Lab at Western University, along with Chris Buddle (McGill University), determined the Beringian pseudoscorpion can tolerate of both cold temperatures and immersion. Article link

A study by Fanny Maure (Université de Montréal) shows that the nutritional status of a host, the spotted lady beetle (Coleomegilla maculata), influences host fate and parasitoid fitness. Article link

Is connectivity the key? From the Buddle and Bennett Labs at McGill University and the James Lab at (Université de Montréal), Dorothy Maguire (McGill University) and colleagues use landscape connectivity and insect herbivory to propose a framework that examines that tradeoffs associated with ecosystem services. Article link

 Alvaro Fuentealba (Université Laval) and colleague discovered that different host tree species show varying natural resistance to spruce budworm. Article link

Insect and Pest Management

Rachel Rix (Dalhousie University) et al. observed that mild insecticide stress can increase reproduction and help aphids better cope with subsequent stress. Article link

Lindsey Goudis (University of Guelph) and others found that the best way to control western bean cutworm is to apply lambda-cyhalothrin and chlorantraniliprole 4 to 18 day after 50 % egg hatch. Article link

Matthew Nunn (Acadia University) and colleague document the diversity and densities of important pest species of wild blueberries in Nova Scotia. Article link

Physiology and Genetics

Does heterozygosity improve symmetry in the Chilean bee, Xeromelissa rozeni? Margarita Miklasevskaja (York University) and colleague tested this hypothesis in their recent paper. Article link

Xeromelissa

A Chilean male Xeromelissa rozeni. Photo credit: Margarita Miklasevskaja.

Recent University of Alberta graduate Jasmine Janes and others explored the mating systems and fine-scale spatial genetic structure for effective management of mountain pine beetle. Article link

Also from the Sperling Lab at the University of Alberta, Julian Dupuis and Felix Sperling examined the complex interaction of hybridization and speciation. They characterized potential hybridization in a species group of swallowtail butterflies. Article link

Marina Defferrari (University of Toronto) and colleagues identified new insulin-like peptides in Rhodnius prolixus and that these peptides are involved in the metabolic homeostasis of lipids and carbohydrates. Article link

Techniques

Crystal Ernst (McGill University) and colleague sampled beetles and spiders in different northern habitats. They found that the diversity of beetles and spiders are affected by habitat and trap type. Article link

 


We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com. You can also send us photos and short descriptions of your research, to appear in a later edition of the research roundup.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students.

The awesomeness of snakeflies

IMG_7883

If you are a fan of Canadian neuropteroids, your bucket list should include a trip out west to see one of our best selling points: the Raphidioptera, or snakeflies. The most common of these are in the genus Agulla, and this morning I found several female Agulla when out for a walk at Mt. Tolmie in Victoria.

IMG_7988

The way the pronotum curls around the anterior of the elongated thorax like a little jacket is strangely pleasing. 

IMG_6813

Snakeflies have a fully motile pupal stage, something I found out just the other day, finding this pupa in a decaying branch of Garry Oak. 

IMG_5712

Here is a freshly-emerged snakefly I found in Oregon a few weeks ago. Note how the wings appear milky and the antennae are not fully hardened. 

IMG_7887

I had hoped to catch these against a blazing orange dawn, but like so many dawns on the west coast, today was rather cloudy.

IMG_7948

Against the mossy bedrock of the Garry Oak meadow, the female snakefly blends in quite well. 

One of the most surprising things I have learned about snakeflies over the years is that the larvae have a very effective reverse locomotion that allows them to quickly back away from danger. Check it out:

IMG_7914

So if you are ever on the west coast at this time of year, please look for these awesome creatures. You will be glad you did. 

The excavator spider

Garden Apr 3 2016-2964 cropped

Guest post by Staffan Lindgren (@bslindgren)

The other day I was practicing macro photography (I am still learning after several years of erratic success at best, so please excuse the imperfections) trying to patiently wait out some Halictus sweat bees with my camera. The bees appeared to be much more patient than I was, however, by which I mean that they sat deep in their burrows, apparently staring me down. So I wandered around looking for other potential subjects to practice on. While examining another bee burrow, I saw a slight movement in the dirt in a spot about 10 cm from the bee burrow. A closer look revealed a very attractive wolf spider hiding in a small depression.  In spite of its gaudy colours (for a wolf spider) it was rather well camouflaged against the dirt. As I watched it, it started to move, and to my surprise picked up dirt and moved it to the edge of its little hiding spot. It remained in the depression and continued to modify it by moving dirt as I attempted to take some photographs.  From what I could tell, it looked as if it used its pedipalps to hold the dirt against the base of its chelicerae to move it, rather than only grabbing it between the chelicerae.

Garden Apr 3 2016-2964 cropped

I had no idea what species I was dealing with, so I went to the web to see if I could figure it out. It turned out to be Arctosa perita (Latreille, 1799), which confused me at first since it is a Eurasian species.  A quick check of Bennett et al. (2014) confirmed its presence. I also found the post “The mystery of the burrow-dwelling sand dune spider” about this species on Catherine Scott’s informative blog “Spiderbytes”, as usual illustrated by a number of excellent photographs by Sean McCann.  These sources confirmed that the spider occurs on Vancouver Island, and that it is a species known to make burrows.

14089105837_356f81b5fc_h

These spiders have some pretty good camouflage, as well as subtle but beautiful colours. Photo by Sean McCann.

Apparently A. perita was introduced in southwestern BC at some point, and it has spread enough that it now seems fairly common, at least in the southwest corner of the province. In fact, we have numerous introduced species of insects and other arthropods in BC, particularly in urban and rural areas. For example, the most commonly seen ground beetles are generally invasives, although we tend to not think of them as such because they don’t impact us directly. They probably do impact the native fauna to some extent, however, albeit not noticeable to our selfserving views. After all, even earthworms (which are almost entirely non-native in Canada) have been labelled harmful to native fauna in forest environments, at least (Addison 2009). Whether or not A. perita has any noticeable effect on native fauna is unknown, but it is an interesting addition to our Canadian fauna.

References

Addison,  J.A. 2009.    Distribution and impacts of invasive earthworms in Canadian forest ecosystems.     Biological Invasions. 11: 59-79.

Bennett, R., D. Blades, D. Buckle, C. Copley, D. Copley, C. Dondale, and R.C. West. 2014. Checklist of the spiders of British Columbia.  (Web) http://ibis.geog.ubc.ca/biodiversity/efauna/documents/BCspiderlistMay2014FINAL.pdf

1 Comment

The Cobblestone Tiger Beetle

tig1

Cobblestone Tiger Beetle. Photo by Stephen Krotzer, used with permission.

by Mischa Giasson

In 2008, l was asked to participate in a mark-release-recapture survey on the shores of Grand Lake, New Brunswick. My dad and I joined Fredericton entomologist Reggie Webster on a boat to visit three small sites among the rocky beaches surrounding the lake. We were searching for a rare, recently locally discovered beetle that is found nowhere else in Canada: the Cobblestone Tiger Beetle. This experience was the first of many that lead me to the realisation that a career in entomology was an option, fueled by my life-long fascination with insects (and other creepy-crawlies).

The Cobblestone Tiger beetle (Cicindela marginipennis) is an insect in the sub-family Cicindellidae (Coleoptera: Carabidae). This small, pretty beetle is listed as Endangered and placed in Schedule 1 of the Species at Risk Act (SARA), which means that the species has been deemed at risk and that there has been development and implementation of protective and recovery measures.

There is no doubt that Tiger Beetles live up to their namesake as extremely beautiful, but equally deadly predators. These beetles run down their prey by sprinting in short, quick bursts. In fact, they run at such high speeds that they temporarily go blind! One species has been recorded moving at 9 km/hr, which is almost 54 times its body length per second. Their antennae are used to prevent any collisions while sprinting and they have a very short reaction time, but they must make frequent stops to take in their surroundings and make sure they’re on the right track.

Both the adults and larvae are predators, the larvae employing a sit-and-wait approach: they wait in ambush from small vertical burrows in the ground, striking out at lightning speed to catch any prey that passes nearby. Prey consists of other insects as well as spiders, which stand no chance against the huge mandibles of the Tiger Beetle. The Cobblestone Tiger Beetle can be distinguished from other Tiger Beetles by the smooth, continuous cream-coloured border along the outer edges of the elytra and by a bright orange/red abdomen that is visible when the beetle is in flight. Their overall colour is most often a dark chocolatey brown, but some metallic blue and green individuals have been observed in the New Brunswick populations.

 

tig 2

Cobblestone Tiger Beetle. Photo by Stephen Krotzer, used with permission.

The Cobblestone Tiger Beetle gets its name from its choice in habitat. The eight sites in New Brunswick where it can be found are all cobblestone beaches. This beetle is also found along major river systems in the United States, from Mississippi to Alabama and from Indiana through to New England. Populations are quite small, few and far between. The Canadian population was discovered in 2003 by Dwayne Sabine and is the only known population to also inhabit lakeshore sites, likely due to the riverine characteristics of Grand Lake. There are three known sites on Grand Lake, while the other five are on the shores of small islands in the Saint John River between Woodstock and Bath. These cobblestone habitats are unique to areas with yearly spring flooding which keeps the vegetation from spreading along the beach, maintaining the flat areas of gravel and sand between the stones which are necessary for the larvae to make their burrows. Not much is known of the Cobblestone Tiger Beetle’s specific life history, but it is assumed to be similar to that of other tiger beetle species. The beetles have a two-year life cycle: eggs are laid individually in the sand, where the larvae will hatch and make burrows. The larvae overwinter in their burrows, somehow surviving the spring floods and emerging as adults in June.

tig3

Cobblestone Tiger Beetle. Photo by Stephen Krotzer, used with permission.

Due to their specific habitat requirements, Cobblestone Tiger Beetles are very vulnerable to environmental changes and disturbances. The biggest threat is habitat damage. In New Brunswick, the installation of the Mactaquac dam destroyed many suitable habitats both upstream and downstream. The small beetle populations are also quite vulnerable to over-collection by scientists and insect enthusiasts. The current concerns involve the use of off-road vehicles, as this leads to the alteration of suitable habitat and often directly leads to the death of many larvae present on the beaches. This threat applies mostly to the shores of Grand Lake, where there is increasing development and use of the beaches. The protective measures implemented include developing a stewardship plan, educating the local communities and encouraging their support and participation in the conservation of this special beetle. Decreasing human disturbance is the most important factor in ensuring the survival in our province of the already very small populations of the Cobblestone Tiger Beetle.

References

https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/plans/rs_cobblestone_tiger_beetle_e_final.pdf

http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=1031

Zurek, D. B., & Gilbert, C. (2014). Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed predator. Proceedings of the Royal Society of London B: Biological Sciences281(1779): 20133072.

1 Comment

The Skillet Clubtail Dragonfly: What you don’t know

SKD

Fig. 1. Skillet Clubtail dragonfly adult; notice the distinctive “skillet” on tail. Photo Credit: David Marvin. Used under a Creative Commons BY-NC-ND 2.0 licence. 

By Melody McLean

What if I told you that as a New Brunswicker, there are animals in danger of going extinct in your own backyard? Saying that, you’re probably thinking of a cute, fuzzy, little animal with big, sad eyes being displaced from its home.  Well, that’s not what I’m referring to. I’m talking about the Skillet Clubtail Dragonfly (Gomphus ventricosus), belonging to the insect order Odonata. This dragonfly currently has no status under the Species at Risk Act (SARA), but was the only arthropod classified in the 2010 COSEWIC (Committee On the Status of Endangered Wildlife In Canada) report as being endangered. Simply put, if we don’t do something, they could become extirpated[i] from Canada or even extinct.  When we hear about insects in our province, we often associate them with being pests, like spruce budworm, aphids, or disease spreading agents like mosquitos. But what we don’t often realize is that not all animals at risk of extinction are cute and fluffy. I’m here to shed some light on an underdog of the animal world, who could use a little help from us.

Insects-we can’t live with them; we can’t live without them.

  What you may not know is just how thankful we (myself included) should be for insects. They clean up after us, help to provide us with rich soil for our gardens, indirectly provide us with fresh food thanks to their pollination efforts; some, like dragonflies, even keep other insects from bugging us¾like our own personal pest control.

 

The Skillet Clubtail dragonfly is strikingly beautiful, with green, yellow, black and brown markings running along its thorax and abdomen; transparent wings; big dark green eyes; and a distinctive circular flare, resembling a skillet, at the tip of its tail (Fig. 1).

The Biology behind the Insect

The Skillet Clubtail’s  life cycle and biology is very similar to that of other dragonflies. The female lays her eggs by dipping her abdomen into the water to release them. Growing and developing, the shallowly burrowed nymphs take at least 2 years (possibly more) to develop before emerging. If conditions are right, usually in the latter 2 weeks of June, the dragonfly nymphs will find a “settle point” where the water is calm; they’ll climb up onto nearby vegetation to emerge synchronously[ii] as adults. Although the nymphs spend the majority of their lives in the water, the adults spend most of their lives around brush, fields, bogs and in the nearby canopy to forage for other insects.

Home of the Skillet Clubtail

 This stunning dragonfly is restricted to North America. In Canada, it is currently found only in a few select places along the Saint John River, specifically in the Fredericton region of New Brunswick.  Over 60 years ago, the Skillet Clubtail could be found in a few other locations in Canada, including Ontario, Nova Scotia and Quebec. But since there have been no recent sightings there, New Brunswick may be the last known Canadian location. The United States is running into similar problems with this insect too.  It was once found in Pennsylvania and New York but is likely extirpated from both of those areas. The U.S. range extends along the Red River Basin, running from Mississippi, Tennessee, Minnesota, to the northeastern limit in New Hampshire and Maine.

Habitat: Very Important

 This insect is in need of a specific and rare habitat type: a clean, large, slowly running body of water, with fine sediments and substrate, such as clay, silt, or sand, with nearby forested areas for cover. Many of these habitats are only found when the waters run through an area of rich soils, at a low gradient[iii].

99 Problems

 This is where problems arise, as the Skillet Clubtail’s habitat is often prime agricultural land, where possible pollution in the river can occur, and nutrient run-off becomes a concern. Keep in mind, agriculture runoff from fertilizers, pesticides, and herbicides, are not the only culprits behind river pollution. Accidental and illegal dumping, and everyday toxins such as oil, grease, road salt, contaminants from vehicle exhaust, lawn and garden chemicals, and other harmful substances, all have a tendency to wash off lawns and roadways down to rivers and waterways. This is especially relevant here in Fredericton as the Saint John River is considered to have “marginal” water quality. As this city is literally built on a hill, all that urban runoff must go somewhere.

Although pollution is likely a major factor to this species decline, there is also the problem of sea level rise. As the sea level rises, saline water travels further up stream into the rivers, changing the chemistry of the water. This is likely to impact freshwater aquatic wildlife, as most aquatic species cannot adapt to such rapid change in their habitat. Because the farthest population is just 5 km away from the saline water limit, this is a real possibility. It’s been discussed that the Skillet Clubtail populations further upstream on the Canaan River and Salmon River could be safe from saline influence. However it has also been speculated that the main Saint John River population acts as a metapopulation, supporting the other two populations by providing immigrating individuals to them.

It’s good to note that this species needs the surrounding forest, included in its habitat. Even though mass cuttings of forests in these locations are unlikely to happen right now, we should still keep in mind deforestation has the potential to affect not only the Skillet Clubtail dragonfly, but many other species as well.

 

Why should you care?

 

Maybe you’ve gotten through this whole article and decided that you don’t care about the Skillet Clubtail Dragonfly. That’s fine. But think of it this way: the things that are likely affecting this particular dragonfly should be of broader concern to us. Chemical runoff, deforestation, general pollution and rise in sea level don’t just affect this one dragonfly species; they affect everything living that comes in contact with them, including us. The best way to finding a solution to a problem is by better understanding it through increasing our knowledge.  Don’t be ignorant of the events happening in your community and environment. Take notice and do something about any detrimental events, like pollution, in your area. Dragonflies and other aquatic insects are great indicators of stream and river health, and not much is known about this particular dragonfly. So if you spot the Skillet Clubtail dragonfly, send your recordings and findings to your local Entomological Society. Many little changes have the potential to lead to one big change.

 

[i]  Extirpated: a species that was once found in an area but is no longer found there. This is different from extinction because you can still find that particular species of animal in other areas of the country or world, therefore not totally extinct just extirpated.

[ii] They all emerge at once over a short period of time.

[iii] Low gradient streams are associated with flattened stream beds, with slow moving water and gradual, less steep slopes of surrounding valley

1 Comment

The sand-verbena moth

SV1

Figure 1 The sand-verbena moth (Photo: Wendy Gibble, Used under a CreativeCommons CC_BY 2.0 licence)

By Lisa Jørgensen

The sand-verbena moth (Copablepharon fuscum) is, when it comes to looks, a relatively anonymous fellow.  This nocturnal moth, which belongs to the order Lepidoptera (butterflies and moths) and the family Noctuidae, has a wingspan of 3.5-4.0 cm and has only been found in three Canadian sites, all on the coast of southwestern British Columbia, and in a few sites in the northwestern coastal part of Washington, USA.

The moth is heavily dependent on the presence of yellow sand-verbena, as this plant is the only host that it uses for egg laying, and later for the emerging larvae and adult to feed on. The yellow sand-verbena demands sandy, nutrient poor conditions, and though it is present in areas where other plants are dominating, it will only flower at sites where it is the dominant species. The moth has been found to require large patches of yellow sand-verbena to sustain a population, but such patches are difficult to come across because of the habitat requirements of the plant.

sv2

Figure 2 Preferred habitat of yellow sand-verbena, here Long Beach Peninsula, WA, US (Photo: Wendy Gibble), Used under a CreativeCommons CC_BY 2.0 licence)

This pickiness in the moth’s choice of host plant is the most probable reason that the sand-verbena moth is considered an endangered species under the SARA (Species at Risk Act), which is the official list of Canadian wildlife at risk. The label ‘endangered’ is put on species that are in risk of extirpation or extinction, meaning that the present populations of an ‘endangered’ species are the last in the wild. We do not know how many individuals of this moth species is left, but we do know that due to plant invasion, the number of sandy patches with yellow sand-verbena is decreasing, as other plants colonize the same habitat, thus keeping down numbers of yellow sand-verbena and keeping them from flowering. When the number or size of available habitats is lowered, the moth populations will naturally experience a decrease. Another reason for the loss of habitat is the proximity of the sandy patches to the shoreline that makes the patches at risk of suffering of erosion or flooding, and the use of dunes for military training that expose the plants to the risk of being trampled down. A more direct threat to the moth than the threat of habitat loss, is the spraying of Btk (Bacillus thuringiensis kurstaki) against the larvae of pest moths, or parasitic flies introduced (i.e. not from the “hood”) for the same cause.

But why should we care about this specific endangered species? It does not play any crucial part in the pollination of yellow sand-verbena, nor is it particularly important in the local food web or to the economy, so what would happen if it we took the laissez-faire approach and did nothing to help this species? It would probably disappear from some patches, and ultimately go extinct, as it has shown poor ability into dispersal on its own. But we can do something, and it may not even cost us a lot of money (that’s a good argument, eh?)! Approaches to help recovery the Canadian populations of sand-verbena moth include the protection of patches dominated by yellow sand-verbena by physically protecting the plants from erosion and trampling by training soldiers, by fencing the area (however temporarily), and the movement of yellow sand-verbena from patches where it has a low abundance (and so no sand-verbena moth population) to patches that are in risk of being dominated by other plants (with a moth population). Also, public outreach to the areas with populations of sand-verbena moth has been initiated, and the existing populations are being monitored. The Ministry of Environment of British Columbia considers the recovery goal of the sand-verbena moth, to maintain the populations at the current locations, to be feasible.

 

 

 

 

 

Sources:

SARA (Government of Canada): https://www.registrelep-sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=789 25/11 2015

British Columbia Invertebrates Recovery Team. 2008. Recovery strategy for Sand-verbena Moth (Copablepharon fuscum) in British Columbia. Prepared for the B.C. Ministry of Environment, Victoria, BC. 18 pp.

 

Basic vs. Applied Entomology: How the Mountain Pine Beetle Opened My Eyes

Trap pictures 002

Staffan Lindgren checking the lure on a prototype multiple funnel trap. Photo: Ron Long

A guest post by Staffan Lindgren

I finished my bachelor’s degree at the University of Uppsala in Sweden in 1975. I had actually completed most of my degree at Umeå University, but because I wanted to take limnology and entomology, I moved to Uppsala for my last semesters, so my degree was granted by that venerable institution. Like many recent graduates, I was now faced with finding my way to a future in biology, and since I was interested in research I wanted to continue as a graduate student. A 2-year detour as a failed doctoral student in medical physiology (I have actually co-authored five publications in endocrinology), a semester as a special-interest student in two courses in forest entomology at what was then the Royal College of Forestry in Stockholm brought me back to essentially the same conundrum. I managed to land some temporary jobs (teaching assistant, which had the perk of leading a student field trip to what was then still the Soviet Union, and stream surveyor using aquatic insects to assess pollution) I applied for entry into the Master of Pest Management (MPM) Program at Simon Fraser University. Why this program? Well, one of my criteria for future employment was that anything I did had to be “useful”, so it had to deal with applied science. To make a long story short, I managed to get through this program, and was recruited by Dr. John Borden for a PhD working on semiochemical-based management of ambrosia beetles. Dr. Borden had quickly pegged me as “bright, but not particularly hard working if not motivated”! I can’t really argue with the latter part of that assessment! Necessity is the mother of invention, they say, and since using sticky traps (the standard research tool when I started) involved hard work, I invented the “multiple-funnel trap”, a story I will save for another blog.

This is where my obsession with “usefulness” started to hurt me, however.  SFU had excellent ecology faculty, and they had a seminar series called “Les Ecologistes” (and they still do). The MPM program also had a seminar series, and unfortunately there was a bit of a rift between the MPM and ecology faculty with each side preferring to stay clear of the other.  Consequently I never went to their seminars, something I deeply regret to this day. I feel that it hurt me because I went through my PhD with blinders on, looking only at outcomes, rather than causes for my successful and failed experiments.

baiting

Dan Miller (now a research scientist at USDA FS, Athens, GA) (Photo B.S. Lindgren) checking the tree where he just applied a verbenone bubble cap.

Skip forward to well into my 10-year stint as Research Director at Phero Tech, Inc., a spinoff company that was in part based on my PhD work, including a commercial version of what was now called “the Lindgren trap”. I was working on the application of verbenone, an oxidation product of a major monoterpene of many conifers, α-pinene via trans-verbenol, the principal aggregation pheromone of the mountain pine beetle Hunt et al 1989). Verbenone had been known for some time through research in the United States, but I wanted to see if we could use our release technology to make it applicable for mountain pine beetle management (Lindgren et al 1989, Safranyik et al. 1992, Shore et al. 1992, Lindgren and Borden 1993, Miller et al. 1995, Lindgren and Miller 2002a,b). The results were somewhat mixed, however. On the one hand we achieved significant protection of trees, but sometimes there seemed to be no effect at all (Amman and Lindgren 1995). It appeared as if the beetles responded, but if they attempted an attack, they then ignored the verbenone. At high densities, verbenone appeared to have no significant effect at all.

As I thought about this, I gradually came to the realization that I had no idea whatsoever of the mechanism of “anti-aggregation”. In the literature, verbenone had been billed as an anti-aggregation or spacing (epideictic) pheromone. Research by David Hunt revealed that verbenone was produced by microorganisms, so that if bacterial symbionts were knocked out, the beetles could not produce verbenone. Furthermore, it appeared that many species responded negatively to verbenone. This made me think that it was less of an anti-aggregation pheromone and more a tissue degradation kairomone, which would explain some of our failures, and necessitate a different approach to application. Other more capable researchers picked up the mantle and the use of verbenone is still being investigated.

It was about this time that I was fortunate enough to land my current position at UNBC, and with many new avenues of (curiosity-driven) research available to me, I eventually abandoned verbenone and semiochemical –based management research. I felt that mountain pine beetle had taught me a lesson, and in the words of Bart Simpson “…I never give up before trying at least one easy thing”.

What is the morale of all this? To me it is an example that shows that we must strive to not let existing paradigms blind us to the opportunities. My experience in science is that paradigm-shifts, even at the small scale that I would be capable of, are often slowed down because you cannot get funded to try something that goes against existing wisdom. One of my lasting memories from my undergraduate years in Sweden was listening to a Nobel Laureate (whose name has long since faded away) in brain research from UC Berkeley (if I recall correctly). He said that he would essentially state as fact something that would go against common knowledge, because he knew that it would generate lots of research to prove him wrong. He didn’t care if he was right or wrong, he just wanted to know the answer! I was never such a maverick, but I think some of the most successful scientists are. In the end, my zealousness for being “useful” made me less able to be just that. Don’t let that happen to you!

References

Amman, G.D. and B.S. Lindgren.  1995. Semiochemicals for management of mountain pine beetle, Dendroctonus ponderosae Hopkins: Current status of research and application. In S.M. Salom and K.R. Hobson [tech.eds.], Application of Semiochemicals for Management of Bark Beetle Infestations –  Proceedings of an Informal Conference, Annual Meeting of the Entomological Society of America, Indianapolis, Indiana, December 12-16, 1993, Gen. Tech. Rep. INT-GTR-318, U.S. Dept. Agric., Forest Service, Intermountain Research Station, Ogden, Utah, 54 pp.

Hunt, D.W.A., J.H. Borden, B.S. Lindgren, and G. Gries.  1989.  The role of autoxidation of  α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera:Scolytidae).  Canadian Journal of Forest Research  19:1275-1282.

Lindgren, B.S. and J.H. Borden. 1993. Displacement and aggregation of mountain pine beetles, Dendroctonus ponderosae (Coleoptera: Scolytidae), in response to their antiaggregation and aggregation pheromones. Can. J. For. Res. 23: 286-290.

Lindgren, B.S., and D.R. Miller. 2002a. Effect of verbenone on predatory and wood boring beetles (Coleoptera) in lodgepole pine forests. Environmental Entomology 31: 766-753.

Lindgren, B.S., and D.R. Miller. 2002b. Effect of verbenone on five species of bark beetles (Coleoptera: Scolytidae) in lodgepole pine forests. Environmental Entomology 31: 759-765.

Lindgren, B.S., J.H. Borden, G.H. Cushon, L.J. Chong and C.J. Higgins.  1989.  Reduction of mountain pine beetle (Coleoptera:Scolytidae) attacks by verbenone in lodgepole pine stands in British Columbia.  Canadian Journal of Forest Research  19:65-68.

Miller, D.R., J.H. Borden, and B.S. Lindgren. 1995. Verbenone: Dose-Dependent Interruption of pheromone-based attraction of three sympatric species of bark beetles (Coleoptera: Scolytidae). Environmental Entomology 24:692-696

Safranyik, L., T.L. Shore, D.A. Linton and B.S. Lindgren. 1992. The effect of verbenone on dispersal and attack of mountain pine beetle,  Dendroctonus ponderosae Hopk. (Col., Scolytidae) in a lodgepole pine stand. Journal of Applied Entomology 113: 391-397

Shore, T.L., L. Safranyik and B.S. Lindgren. 1992. The response of mountain pine beetle (Dendroctonus ponderosae) to lodgepole pine trees baited with verbenone and exo-brevicomin. Journal of Chemical Ecology 18: 533-541

4 Comments

We stand on the shoulders of giants: Reflections by a midget


Darwin-0002 (1)

Guest post by Staffan Lindgren

On a rainy, blustery day I am sitting in my new home in Nanaimo, BC, and thinking about my professional career, which is about to come to an end in the next few weeks, at least officially. I have been doing a fair bit of reading lately, and the last 2 books have been by and about Charles Darwin. Both are books I probably should have read a long time ago. The first book was Darwin’s “The voyage of the Beagle”, which is essentially a travel diary of the four-year journey Darwin took as a young man. The second book was “Darwin and the barnacle”, by Rebecca Stott, which is about Darwin’s struggles to formulate his Magnus OpusOn the Origin of Species by Means of Natural Selection”, which essentially changed biological sciences, and perhaps society, forever. The “Voyage” gave me an appreciation of the incredible breadth of knowledge that Darwin acquired. Much of the book deals with geology and the effects of seismic activity on the environment rather than the biological focus I had expected. Stott’s book is a somewhat fictionalized portrait of Darwin’s life in the period between his return from the Beagle voyage and the publication of his final of a four volume monograph on the barnacles (Cirripedia). The book is largely based on correspondence and publications, and luckily Darwin seems to have recorded pretty much everything he did, although Darwin’s actions and thoughts may have been embellished somewhat by the Stott’s imagination. For me, it worked quite well, though. I felt as if I got to know the man much better, and particularly I felt that I got an appreciation of the monumental barriers that Darwin overcame, both because of the rather crude technology available to him (fairly rudimentary microscopes, correspondence by “snail mail” etc.), and his poor health.  I was amazed to find out that he suffered from sea sickness during his voyage on the Beagle, and anyone who knows what that is like (I have been lucky, but have been close enough a couple of times) would perhaps understand how difficult it would be to work productively while sea sick, let alone in the cramped quarters on the ship. Darwin’s “lab” was in the “poop cabin”, which conures up some interesting images for us landlubbers, but actually only refers to the cabin in the elevated “poop deck” at the front of a ship”. Darwin also had bouts of illness during his voyage, but most notable he suffered chronic problems after his voyage. This may have been due to Chagas’ disease, which was unknown at the time.  During a trip across the Cordillera (he made numerous such excursions during his voyage), Darwin describes a night spent in Luxan (now Luján de Cuyo), in the western Mendoza Province, as follows: “At night I experienced an attack (for it deserves no less a name) of the Benchuca, a species of Reduvius, the great black bug of the Pampas” .  Chagas’ disease is widespread in that area.

5748862444_f726fdd107_z

Scientists back then were either independently wealthy, like Darwin, or employed as clergymen or physicians, or more rarely as lecturers at universities. Linnaeus for example, was a physician as well as a naturalist. It has always been my assumption that this allowed them virtually endless amounts of time. Darwin, however, spent only 2-3 hours a day on his barnacles due to a rigorous water cure he used to overcome his illness. In spite of this, he published rather prolifically on geology, volcanoes, coral reefs, plants, domestic animals and humans. In the title I refer to myself as a midget, and after reading about Darwin I really do feel rather insignificant!

I enjoy retrospective mind-journeys. Another scientist that I have a particular interest in was one of Linnaeus disciples, Daniel Solander. His name rarely surfaces, however, because he did not publish his work for various reasons (apparently in large part in deference to his friend and financier Joseph Banks, but also because he died of a stroke at age 49). He is of particular interest to me because he grew up about 6 km from where I grew up in a small town in northern Sweden, so it is likely that I spent my naturalist beginnings in the same areas that he did. He was a naturalist on James Cook’s first voyage on the Endeavour, and was therefore one of the first scientists to see the odd marsupials of Australia, for example.

6998731575_d095a20b7e_b

Science today is very different. Naturalists, systematists and taxonomists, which is what old-school scientists were, are not valued the way they were even as late as the mid-20th Century. Our publications tend to be short and to the point, lacking the wonderful context that older literature often provides. Looking at the publications of my entomology professor, Bertil Kullenberg, who was active into the mid-1990’s, it is striking how often the title includes “Observations on…”, “Studies on…”, or something similar, particularly early on. Of course, if current publications were as prosaic as they were back then, the task of keeping up would be even more daunting with hundreds or thousands of papers published on the most important (to humans) taxa. But perhaps they would be more enjoyable to read?

With the processing power of present day computers, we can now do in seconds what would take weeks or months in the past, if it was possible at all. One aspect of science (specifically entomology in my experience) that remains constant today is the camaraderie among scientists. Darwin understood the importance of networking, and depended to a large extent on his friends and colleagues for specimens, reviews, and discussion: “if a person wants to ascertain how much true kindness exists amongst the disciples of Natural History, he should undertake, as I have done, a monograph on some tribe of animals, and let his wish for assistance be known.”  To me, it is gratifying that one of the greatest minds of science, also appears to have been a genuinely kind and considerate person. That is something I admire greatly, and as I look back at my own rather modest career (particularly in light of giants like Charles Darwin) it is the friendships with colleagues that I value the most. A most appropriate reflection as the holiday season approaches. Happy holidays everyone!

Sources

Darwin, C. 1962. The Voyage of the Beagle. Natural History Library edition, edited by Leonard Engel.

Stott, Rebecca. 2003. Darwin and the Barnacle. W.W. Norton & Co., New York

20151110-IMG_9179

Winning Presentations

Photo 1 The author’s graduate student, Andrew Chaulk, captured in mid-presentation at the ESCJAM 2015 in Montreal. Andrew received an honourable mention for this communication. (photo by Sean McCann)

The author’s graduate student, Andrew Chaulk, captured in mid-presentation at the ESCJAM 2015 in Montreal. Andrew received an honourable mention for this communication. (photo by Sean McCann)

Guest post by Tom Chapman

 

My students frequently win prizes for their conference presentations (2015 was a particularly good year for our group), and I am more than willing to bask in their reflected glory. But really, was I a brilliant speaker in my day? Simply put, no. I have gotten better, you can’t help it, it just comes with age. And perhaps having taken my lumps, I am now able to provide some helpful advice. Looking back on my public speaking experiences, I think I can offer two lessons for students that are worried about presenting at scientific meetings: (1) there is time to develop as a speaker (2) in the meantime, if you are earnest; that is, you think you have something to say, no matter how modest, that could benefit your audience, your presentation is going to go well. To demonstrate these lessons, what follows is primarily the story of my last, and scariest, undergraduate presentation. Although, I start this story the year after that.

 

It was orientation day for us newly enrolled graduate students. We were shown the library, we met the office staff, we met our graduate student representatives and we were given advice on various aspects of graduate student life by the faculty. One grad-rep told us that these were to be the “best days of our lives!” I was hopeful, but she turned out to be very wrong (lots of bloggy grist there for another time). More nonsense was presented to us on the subject of presentations. Let’s call this presenter Professor Ramrod. Never use humour in a talk – and there was none to be found in Ramrod’s Address. Men should wear a tie and jacket and women should wear a skirt suit. He was wearing a classic tweed jacket with leather elbow patches; yup, I’m sure you are picturing him perfectly now. During this presentation I tried and failed to make knowing eye contact with my fellow novices. They must have been concentrating very hard on their poker faces, otherwise, were they really taking seriously this dinosaur’s fashion advice? Ramrod’s list of no-no’s continued: never lean on the lectern, never move out from behind the lectern, never put your hands in your pockets, never… In brief, this teacher of the highest rank’s take home message: there is only one way to give a presentation. What bullshit! I think you get advice like this from people that assume when they find themselves at their destination that every step they took en route was a positive and essential one. And they must be incurious in the stories of others in order to believe that they have found the one true path. I have a colleague that told me his secret to winning large research grants. I leaned forward attentively as he said “use plenty of sub-headings.” Ta-da! I’ve read his grant applications. He is wildly successful despite using a ludicrous number of pointless sub-headings. Similarly, my ramrod impaled professor above, was successful despite being an uninspiring orator. Take note here, you have to give presentations, but you don’t need to be good at it to have a career in science. On that first day of orientation, I sensed that presentation-cat-skinning could be done a number of ways, but I hadn’t found my way. In fact, my last presentation as an undergraduate was a nightmare.

The author (1990), Truelove Lowlands, Devon Island. (photo by Christine Earnshaw)

The author (1990), Truelove Lowlands, Devon Island. (photo by Christine Earnshaw)

 

I was enrolled in a research course where you conduct an original project, write a paper about it, and then present it to the faculty. My project was in the Canadian high arctic (Truelove lowlands on Devon Island, to be more precise), and I was measuring the amount of heat energy absorbed by the inflorescences of Salix arctica, the arctic willow. What does this have to do with insects? Not a lot, I focused on the impact of heat on the development time of pollen and ovules. But maybe you didn’t know that some insects can be attracted to some plants for the heat energy they offer. I did find fly larvae in some of the fuzzier inflorescences of the willows on Devon, but I didn’t pursue it. If that observation hasn’t already been noted and published by others, you’re welcome to it. Everything that was involved in executing this project, even the data analysis and writing, was a thrilling experience for me. I had plenty of help and inspiration from others, and I do credit this experience with influencing my decision to pursue a career in research. Again, my oral presentation was almost the undoing of that.

 

While helping me to prepare my talk, my adviser could sense that I was very nervous. So, he told me the story of the student he supervised in the course the previous year. Apparently, this student did a great job collecting data and putting together the final paper. His presentation went well enough, but the final slide, no one knows why, was a picture of this student and his girlfriend. They were both naked, spread eagled and caught in mid-jump off the end of someone’s cottage dock. There was no microphone in the classroom, but it was certainly a drop-mic moment. He took no questions and walked out of the room never to be seen again, or so I was told. I think I was to take from this story that no matter how bad my presentation went it wouldn’t be that bad. Instead, what I took from this story was that it was possible to screw up so horribly that you could be remembered forever and used as a warning to others. It never helps, don’t tell these stories when someone is feeling anxious. It’s the same rule when trying to comfort someone before a comprehensive exam or dissertation defence. When you say something like, “don’t worry about it, Terri passed and she’s an idiot”, that just means to your listener that not only will they fail, they’ll be stupider than Terri. If you get told an apocryphal public speaking story, keep a few things in mind. The teller usually wasn’t present at the talk, so who knows how true the story is, and the teller never goes on to say what happened to the person afterwards. I didn’t see spread-eagle boy’s talk, I can’t be sure of its veracity, but if my advisor had gone on to say that the guy passed the course anyway, and that spread-eagle boy and his girlfriend are still in love and doing crazy fun things together, I would have felt better. Public speaking is rarely lethal, and even if it goes badly the impacts on you and your career are local and temporary.

 

I didn’t have that perspective the evening before this arctic willow talk. I didn’t sleep at all, and let’s just say that I left the bathroom fan on for the night. There were five of us to give talks, I was last. There were about 15 faculty and a handful of graduate students in attendance, each of them was armed with five printed sheets of paper to guide them in their evisceration of the five of us. The small size of the classroom made it very cramped and, therefore, this already intimidating audience was made more menacing. I don’t know how my classmates performed or what their projects were about because I was lost in anxious thoughts. When my turn finally came I was bloated with gas and in pain. I gingerly walked to the lectern and then stood unmoving. I was following Professor Ramrods future advice, but only because I was afraid if I moved I would fart. When I began my talk I discovered that my tongue would repeatedly release with a clack from the roof of my very dry mouth. I would utter a few sentences that sounded like clack, clack, clack, clack, and then I would pause. During these pauses I would switch hundreds of times rapidly between two panicky thoughts: run away now and never look back; stick it out and finish this crappy little lecture. Then I would continue clack, clack, clack, clack, pause, clack, clack, clack, clack, pause until my talk was finished. I wasn’t completely sure how it went, but at least I didn’t fart. I wonder if there is someone out there who was unable to say that at the end of their presentation?

 

In my evaluations several people indicated irritation that they couldn’t see the whole screen because I was blocking some of it, and they suggested that I move around a bit; they didn’t know I had gas, but fair enough. More shocking was that the majority of my evaluators described my frequent pauses as thoughtful. What was sheer panic was largely perceived by my audience as calm control, or they were willing to put the best spin on it. I got an okay mark, so it would appear that even this assembly, stacked with smarty-pantses, was willing to work to understand my message and could sympathize with a young person who was obviously nervous. Caring audiences are not just found at home. Years later, a lab-mate of mine gave a talk at an international meeting. She always put awesome hours of preparation into her talks. Although, to see her present was like visiting Disney’s Hall of Presidents. Like an automaton, she would appear to rise slowly from beneath the stage and then would begin human enough looking head and hand movements while unerringly running through her very formal monologue. But, during this presentation something jammed a cog in her works and she stumbled on the word “phylogeneticist” and then blurted out loudly “I screwed up!”. She then continued with her script, took questions and left the stage. I caught up with her a little later, she had clearly had had a cry, she is not the robot you see on stage. While we chatted several strangers interrupted us to tell her how much they appreciated her presentation. One woman went so far as to say it was the best presentation of the meeting; no small praise, we were in the third day of the conference program of about 1000 talks. Every audience is filled with these wonderful people. Yes, there are a few sociopaths out there, but they are hugely outnumbered and you can count on the rest of us to understand what you are going through and to pull you along.

 

Back to my undergrad presentation, the other positive comment from my assessors was how well I handled their questions. In Steven Pinker’s book, The Sense of Style, there is a chapter called The Curse of Knowledge. He argues that painfully unintelligible writing arises from the author failing to imagine “what it’s like for someone else not to know something that [they] know”. I did that with this talk. I failed to realize that no one in that room was there on the tundra with me, nor had anyone else been to the arctic at all. The questions were simple, and now I can see how I had motivated them. I have come to really look forward to questions (I would rather cut short my presentation than to miss hearing from the audience), they are the best indication to me of how well my message came through, and it’s a small disaster when I get no questions at all.

 

In summary, my group emotionally support each other (I get support too), we focus and refine our talk messages, we take risks by exploring new ways to communicate those messages, we think about our audience’s perspective and we count on empathy from those audiences. If some scientific society wants to give one of us a cheque, then the drinks are on the winner.

The author’s graduate student, Holly Caravan, captured in mid-presentation at the ESCJAM 2015 in Montreal. Holly was selected to present in the Graduate Student Showcase. (photo by Sean McCann)

The author’s graduate student, Holly Caravan, captured in mid-presentation at the ESCJAM 2015 in Montreal. Holly was selected to present in the Graduate Student Showcase. (photo by Sean McCann)

Travel awards for ICE 2016 in Orlando

161325066_636cd68577_b

Remember: Florida insects are awesome! Here is Oncometopia nigricans, a beautiful leafhopper!

 

OK all you students and early career professionals, the time to apply for travel funding for the 2016 ICE conference in Orlando is running out! Apply for these awards! I have copied the text (both English and French) of the instructions to apply below, but if you prefer to download….

Here are the application instructions in English

et voici les instructions d’application en francais

Entomological Society of Canada Travel Awards for the 2016 XXV International Congress of Entomology

 

The 2016 Entomological Society of Canada (ESC) meeting will be held in conjunction with the International Congress of Entomology (ICE) in Orlando, Florida, from September 25-30, 2016. Thanks to the generous support of Enterra Feed Corporation and Dow Agrosciences Canada the ESC is offering 14 cash awards of $750 to provide financial assistance for students and early professionals to travel to ICE 2016.

 

Eligibility:

  1. The competition for the ESC ICE Travel Awards is open to students in a graduate program at a Canadian university, and to early professionals. Early professional membership applies to persons within 3 years (based on the calendar year) of graduation from their highest educational degree. Awardees must be members in good standing (dues paid) of the ESC at the time the award is given.
  2. Graduate students or early professionals must present a paper or a poster at ICE 2016 on their own original research.
  3. Individuals can accept either the ESC ICE travel award or an ESA STEP travel award (which will be announced around Dec. 1st 2015).

 

Deadline: December 21st 2015

 

Applications to be submitted by email to: jsc21@sfu.ca with the following in the subject line – Your last name and ICE 2016. The application must contain the following 3 documents in this order and be in a single pdf file. Any applications not meeting this format will not be reviewed

 

Applications will be evaluated on:

 

  1. A short Curriculum Vitae (no more than 2 pages), that includes contact information, education, employment history, the most relevant publications, presentations, awards, grants and scholarships, other activities, outreach and service.

 

  1. A one-page statement of significance which describes the scope and importance of the work to be presented and how attending the meeting will benefit the applicant.

 

  1. Details of estimated costs for ICE 2016, indicating other sources of funding, either confirmed or applied for.

 

  1. In addition, arrange for a one-page letter of recommendation from your supervisor or a faculty member who is familiar with your research to be emailed to jsc21@sfu.ca with your name in the subject line. This should also be a pdf.

 

Applications will be reviewed by the Students Awards Committee of the ESC. Winners will be notified by mid-January (i.e. before the deadline for abstracts).

 

 

Bourses de voyage de la Société d’entomologie du Canada pour le XXV International Congress of Entomology 2016

 

La réunion annuelle 2016 de la Société d’entomologie du Canada (SEC) se tiendra en concomitance avec l’International Congress of Entomology (ICE) à Orlando, Floride, du 25 au 30 septembre 2016.  Grâce au soutien généreux d’Enterra Feed Corporation et de Dow Agrosciences Canada, la SEC offre 14 bourses en argent de 750$ pour fournir une aide financière aux étudiants et jeunes professionnels pour se rendre à l’ICE 2016.

 

Éligibilité :

  1. La compétition pour les bourses de voyage SEC ICE est ouverte aux étudiants dans un programme de cycle supérieur dans une université canadienne et aux jeunes professionnels. La catégorie de membre jeune professionnel s’applique aux gens ayant gradués de leur plus haut diplôme il y a moins de 3 ans (selon l’année de calendrier). Les récipiendaires doivent être membres en règle (frais d’adhésion payés) de la SEC au moment où la bourse est remise.
  2. Les étudiants gradués ou jeunes professionnels doivent présenter un oral ou une affiche lors de l’ICE 2016 sur leurs propres recherches originales.
  3. Les individus peuvent accepter la bourse de voyage SEC ICE ou une bourse de voyage ESA STEP (qui sera annoncée autour du 1er décembre 2015).

 

Date limite : 21 décembre 2015

 

Les applications doivent être soumises par courriel à jsc21@sfu.ca avec pour objet – Votre nom de famille et ICE 2016. L’application doit contenir les 3 documents suivants dans cet ordre et dans un seul fichier pdf. Toute application ne rencontrant pas ce format ne sera pas évaluée.

 

Les candidatures seront évaluées sur :

 

  1. Un court Curriculum Vitae (pas plus de 2 pages) incluant les informations de contact, l’éducation, l’historique d’emploi, les publications les plus pertinentes, les présentations, les prix, subventions et bourses, les autres activités, la diffusion et les services.

 

  1. Une déclaration de valeur d’une page décrivant la portée et l’importance du travail qui sera présenté et de la façon dont la participation à la réunion sera bénéfique pour le candidat.

 

  1. Un estimé détaillé des coûts pour l’ICE 2016, indiquant les autres sources de financement, confirmées ou demandées.

 

  1. Vous devez vous assurer qu’une lettre de recommandation d’une page de votre directeur ou d’un membre du département qui est familier avec votre recherche soit envoyée à jsc21@sfu.ca avec votre nom dans l’objet. Ce document doit être en pdf.

 

Les candidatures seront évaluées par le comité des prix étudiants de la SEC. Les gagnants seront avisés au plus tard mi-janvier (i.e. avant la date limite de soumission des résumés).

 

A Canadian Entomologist in Australia

Holly and Jake 2014

A termite mound on the road to Tom Price, Western Australian. A 2014 field trip through the Pilbara with two of the author’s PhD students, Jake Coates and Holly Caravan (not the first trip to Australia for any of them)

 A Canadian Entomologist in Australia (it has been done before, I am sure, but here are my two cents. Or, should I round that down to zero or up to 5 cents?) Okay, new title: My five cents

Guest post by Tom Chapman

I have introduced many Canadian students to Australian based fieldwork (e.g. Jake Coates). They’ve heard the stories, so they tended to start with some fear of Australia’s deadly denizens. Here is my advice to them woven into some of my personal stories of working in Australia. First, some of the most amazing biologists (professional and otherwise) in the world are Australian. But, do not assume that every Australian you meet is an outback survival expert with excellent knowledge of the local flora and fauna. And get ready; you are going to be teased and fed a lot of nonsense (exhibit A: dropbears).

My first expedition to Australia, the land of perilous animals, was in 1997. I was a graduate student, I knew next to nothing about the southern hemisphere let alone anything about Australia, and I was traveling on my own. I was to begin collecting gall-inducing thrips on Acacia. My supervisor, arguably the world’s expert on these insects (sorry Laurence Mound, father of all things thrippy), was to follow me a few weeks later. Why was I going first? I never really knew, maybe my supervisor didn’t want to be seated long-term by my side on cramped airplanes, but I tried not to take it personally. After about 31 hours of traveling, I arrived in Adelaide; well placed at the edge of Australia’s arid zone to begin my search for Acacia thrips.

An Acacia thrips gall covered in aphids and tended by ants (2007, near Fowler’s Gap, NSW)

An Acacia thrips gall covered in aphids and tended by ants (2007, near Fowler’s Gap, NSW)

A very generous and outgoing student, among the research group at Flinders University that was to host me, volunteered to pick me up at the airport. It was a two hour round trip for her, so I was grateful and indebted, but she seemed to have no idea how exhausting my travels were for me. During our commute to the University she was non-stop questions and instantly personal. What were my dreams and aspirations? Did I prefer to sleep with men or women? How many times had I had my heart broken? My brain was so clouded with exhaustion that I couldn’t deflect this assault or form coherent replies, the latter of which didn’t seem to matter to her. When we parked at Flinders, we were confronted by a long flight of cement stairs leading to the biology building. I lagged well behind on our ascent, but here is when I uttered my first ignorant and anxiety-motivated question during this visit: Should we be worried about redback spiders? She came back down the stairs and told me that while having lived her entire life in Adelaide she had never seen a living specimen of that species. I pointed down and past her foot and I said, “I think that’s one”. She took a look and she agreed: it was a living redback spider. We continued up the stairs, but I was baffled. How had this woman, so unaware of this deadly spider species, survived to adulthood? Anyway, one hour after arriving in Australia I had escaped injury during this my first deadly Australian animal encounter.

Over the next few days my jet lag receded and I started to get to know many more of the students among my host group. I knew I was making strong personal connections when during a trip to the campus bar one student informed me, “We thought you’d be an asshole”. After asking a few questions, what I think he was saying was that having met my supervisor the year before, that by association I would share many of his qualities. I don’t agree with this person’s opinion of my supervisor, but is there evidence of personality associations between students and supervisors? I leave you, the reader, to ponder that question, and I know that for some of you it would be horrifying if there were positive evidence on the subject. Another indication that I was making connections that afternoon was that I was also invited to join a group to watch a Cricket test on TV. I didn’t admit it at the time, but I thought Cricket was a game that died out a century and a half ago. I can’t have been the only Canadian that is embarrassingly ignorant of the fact that there are well over a billion people that are obsessed with this game. And for those that are aware of the vibrancy of Cricket, and think very little of me now, I want you to know that I became a fan. For instance, I know who Sir Donald Bradman is and I even lived a few blocks away from Centennial Park Cemetery and was present when his ashes were interred there. If you want to impress South Australians in particular, look up “The Don” and memorize a few of his batting statistics, you’ll win over some hearts.

However, this initial introduction to Cricket was painfully dull for me despite my host’s encyclopedic tutorials on rules and traditions. Several times I tried to engage the group in conversational topics other than Cricket. These efforts failed until I asked about swimming locally and the potential for being attacked by sharks. Admitting any anxiety about these dead-eyed predators to a group of Australians is somewhat like the popular notion of adding blood to the water on the behaviour of a shark. Everyone in that lounge room broiled with horrendous attack stories for me to hear. It was hard to keep track, but I think there were at least three people this group knew of directly who had been bitten or killed. When they had clearly shaken me the group switched to trying to assure me that swimming was safe – Listen mate, you have more chance of being struck by lightning. I asked the group to tell me some stories of people they knew that had been struck by lightning. They didn’t have a one! I am not suggesting that means that shark attacks are more common; instead I think it means that lightning strike stories just don’t hold the attention of visitors to Australia. Therefore, there isn’t the same temptation for locals to retell, confuse some details and exaggerate these stories. I have seen other visitors tormented the same way as I was. It seems cruel. We really are worried and have deep fears about shark attacks. Why is that not apparent to our hosts? I think I gained some insight years later when I moved to Adelaide and naturalized (my family and I became CanAussies). A neighbour asked me how, when I lived in Canada, I had the courage to leave my house. I thought they were referring to Canada’s cold winter weather, but instead they meant the bears. Doesn’t that sound ridiculous? Even Canadians that live in bear country would find that ridiculous – Listen mate, you have more chance of being struck by lightning (I’m strategically leaving Churchill, Manitoba out of this discussion). My point is that Australians see our fears as absurd so teasing us doesn’t seem so wrong.

The author’s children during a 2003 camping trip to the Flinders Ranges of South Australia.

The author’s children during a 2003 camping trip to the Flinders Ranges of South Australia.

Australians might have sharks in perspective, but not everyone you meet there knows the bush like a Mick Dundee.  Australia is more urbanized then Canada (89.2 % versus 80.7 %). And, among the general population there remains significant fear and ignorance of the wildlife on their Island Continent. Turning again to the deadly redback spider, another neighbour in Australia was using these nifty rake/gloves to bag yard waste. Imagine The Wolverine with webbing between his claws. A redback climbed out of the dried leaves pinned between the gloves and crawled on to the back of my neighbour’s hand and bit him. He told me later that the pain was immediately blazing hot and he was terrified that he would die. That is not what is commonly reported; the bite is usually described as a mild sting with pain sharpening 20 to 40 minutes later. He screamed, got the attention of his wife and she rushed him to emergency where the highly competent staff there encouraged him to ice it, monitored him for a little while and then sent him home. What, not instant death? There is an antivenin but it is not always administered, and there hasn’t been a death due directly to a redback bite post 1956 (when the antivenin was developed). We found a redback in the pouch on the front of my daughter’s bicycle, one in the door of our car, and one under the last step of the spiral staircase in our house. I played volleyball once a week at a sports complex and if our game was the last of the evening we had the job of taking down the nets and turning off the lights. One night a teammate noticed that there was a redback in the light box. He warned us that they can jump two meters and that we needed to stay back. Nonsense. Enough was enough. I stepped up and reached in and turned off the lights. I am certain that this spider was grateful; the dark brings out her preferred prey and it certainly wasn’t volleyball players. While living in Australia, these spiders were a constant in my family’s lives and none of us were ever bitten. It was now easy to imagine how the unobservant woman I mentioned at the start of this piece survived her childhood and adolescent years.

It is now almost two decades that I have been conducting fieldwork in arid Australia. The only animals that have caused me any harm have been ants, it was on that first trip to Australia and it wasn’t that bad. By this time my supervisor had arrived in Australia. Along with an Australian student, my supervisor and I drove from Adelaide to near Brisbane and returned to Adelaide. The trip took us 10 days and we covered over 5000 km, much of it on dirt tracks. We kept the air conditioner off to save fuel and we had the windows down. The work was hot and dusty. I wanted to be seen as a hard working student. I didn’t want to show any weakness on this trip, but by the sixth day late in the afternoon a wall appeared and I ran right into it; I had squatted down in front of a small Acacia bush and was staring blankly through the foliage. I hoped that it would appear that I was still looking for thrips galls, but I was really pretending that I was anywhere but in that desert. So I didn’t notice that several hundred bull ants had crawled up over my boots and socks until they started stinging me. I whooped and leapt around while slapping myself with my hat, and just as I settled down a flat bed pickup truck, off road and appearing to come from nowhere, drove slowly (a trot maybe) past me. There were four people in the cab, two on the cab, two on the bonnet and maybe eight people on the back. In the middle of the eight was a very large and dead red kangaroo: a big boomer. Even though the truck was only meters away, no one made eye contact with me as they past except for a little kid that beamed me a beautiful smile and waved the Kangaroo’s front paw. All these years later that moment remains my most favorite, stings and all.

We took a family vacation to Alice Springs in the Northern Territory. It was a three-day drive up from Adelaide, tough to do with little kids. We had only two children’s music tapes, so we heard the tapes a dozen times each. One tape was by the Wiggles. It was the one where the Wiggles ask Steve Irwin (the Crocodile Hunter) a question about an Australian animal, like can emus fly? After Steve answered them the Wiggles would then sing a song about that animal. After we heard this tape five times my five-year-old sounding very exasperated bellowed, “Those Wiggles don’t know anything about Australian animals!” To be fair, they probably do know something, and I would say that just like hiking through Canada’s bear country it helps to have a little knowledge about the local wildlife to stay safe. But, fear and ignorance have no place. While traveling in Australia, if you still get talked into putting forks in your hair to ward off dropbear attacks, well then there is no helping you.

 

ESC/SEQ JAM 2015 in Montreal

20151109-IMG_9020

This past weekend marked the beginning of the Entomological Society of Canada and the Société d’entomologie du Québec’s Joint Annual Meeting in Montreal. This three day event brought together a large number of insect researchers and insect enthusiasts from all across Canada. This was my second ESC/SEQ meeting in Montreal, and the second since I have been a student. As a blog administrator, I got a bit of an inside look at the current issues facing the society at the meeting of the ESC board meeting, which will be the subject of future posts. I also got quite a few bedbug bites from staying in a cheap hostel the night of the board meeting, but that is another, and terrible story.

Anyway, of course I brought my camera, and so here I give you the conference from my perspective.

20151107-IMG_8856

Here is the board meeting, which was also being shot by Louise Hénault-Ethier.

20151108-IMG_8882

On the opening day, the Gold Medal address was delivered by Jon Sweeney, reflecting mainly on his collaborators over the years and how the have helped shape his stellar career in entomology.

20151108-IMG_8889

Guy Boivin delivered the Heritage Lecture, which was an awesome mix of First Nations insect lore, followed by the early natural historians of New France. I learned quite a bit from this, and I hope Guy may write some more on the subject for the Canadian Entomologist.

20151108-IMG_8903

Sunday’s plenary session featured Marcel Dicke from Wageningen University, and was an absolutely fascinating story about herbivores, parasitoids and hyperparistitoids on mustards. The interactions he described kind of blew my mind.

20151108-IMG_8915

The first talk of the Graduate Student’s Showcase was by Christina Hodson from UVic. She described her work on a charismatic little psocopteran and its weird sex distorting elements.

20151108-IMG_8925

Holly Caravan of Memorial University delivering her lecture on fascinating social aphids, with some great background on other social insects.

20151108-IMG_8928

Jean-Philippe Parent of Université de. Montréal gave a riveting lecture on how to determine if an insect can measure time.

20151108-IMG_8937

Leanna Lachowsky of University of Calgary with a topic near and dear to those of of from the west: mountain pine beetle! This was a cool study on sex allocation in this troublesome forest pest.

20151108-IMG_8941

And finally, Paul Abram from Université de Montréal on stinkbugs and their parasitoids.

20151108-IMG_8969

After the great opening sessions, we all repaired to the Insectarium to enjoy drinks in the company of our favourite colleagues and study subjects!

20151108-IMG_8997

If you ever try photographing people in this space, you will quickly learn how much colour casts arise from the brightly painted walls. I did manage to capture this one of Louise as many of you will remember her, behind the camera!

20151108-IMG_8945

I caught this one of Cedric on the bus back from the Insectarium

20151109-IMG_9020

Big thanks to Sarah Loboda and Maxime Larivée for running so much behind the scenes. They provided to me my favourite shot of the conference as well! Not sure how they kept their wits about them, but I think it was because they both have such a good sense of humour.

20151109-IMG_9024

Monday’s plenary was delivered by Jessica Forrest, from University of Ottawa, talking about a whole range of issues with a population of montane bees in Colorado.

From here on, my trajectory through the conference will probably differ substantially from yours. I of course needed to attend the sessions in which my former labmates were giving talks, but even so I did not manage to catch them all! I present to you instead a slideshow of images that I took during the conference. I will say how impressed I was by the student presentations this year in the GSS and the President’s Prize sessions. ESC students are really on the ball at how to give effective talks, and I hope that the more senior among us are paying attention! Perhaps in 2017 we can have a Student’s Prize to award to the best regular session talk!

This slideshow requires JavaScript.



















1 Comment

Differential parasitism and ash tree volatile organic chemicals

By Tyler Wist  

The ash leaf cone roller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) (Fig. 1) started to get noticed in the cities of the Western Canadian prairies in 1998, well, in Saskatoon, SK at least. I know this because that summer the green ash, Fraxinus pennsylvanica (Oleaceae), in my front yard was covered in cone rolled leaflets and had not been prior to that year. I had just started working for the City of Saskatoon’s Pest Management Program that year and one of our mandates was urban forest insects…not that there was any budget to control them, but it piqued my interest in urban forest entomology.

Fig. 1 The ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) adult, pupal exuvium and cocoon.

Fig. 1 – The ash leaf coneroller, Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae) adult, pupal exuvium and cocoon.

The following year, Chris Saunders with the City of Edmonton’s Pest Management Program, contacted us in Pest Management and asked if we had seen this cone roller on our ash trees because they had just noticed it on the ash trees in Edmonton. Greg Pohl had identified this leaf miner/leaf roller that year on all species of horticultural Fraxinus in Edmonton and published the identification and some life history of the moth in a 2004 paper (Pohl et al. 2004) along with a brief identification of several parasitoids that were reared from larvae and pupae. The lone braconid, identified to the genus Apanteles and found to be all one species by Darryl Williams of the Canadian Forest Service in Edmonton seemed to be the dominant parasitoid in this complex, but without a species designation not much else about the wasp could be gleaned from the literature.

Chris Saunders suggested that I study the ash leaf cone roller as a master’s project but I digressed from urban forest entomology for a few years into pollination of a nutraceutical/agricultural crop. By this time, the ash leaf cone roller had spread to every ash tree in both cities and often rolled 100% of the leaflets on a single tree. I finally followed Chris’ advice and started a PhD project in Maya Evenden’s lab at the University of Alberta, which was the only lab in Canada that was working on the ash leaf cone roller problem (Evenden 2009). The Apanteles sp. was still the dominant parasitoid and so, along with studies on the chemical ecology of the moth (Wist et al. 2014), I also studied the third trophic level in this system (Wist and Evenden 2013). Of course, I couldn’t go through my studies without knowing what the species designation was for the dominant parasitoid wasp. Fortunately, Jose Fernandez-Triana had just begun his study of the genus Apanteles at the CNC in Ottawa and once Henri Goulet passed along the Apanteles specimens that I had sent for identification he quickly determined that this parasitoid was Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) (Fig. 2).

Fig. 2 Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae)

Fig. 2  – Female Apanteles polychrosidis Viereck (Hymenopetra: Braconidae)

Apanteles polychrosidis kills the ash leaf cone roller larvae before they can chew their emergence “window” that they use to escape the cone rolled leaflet as adults. This behaviour gives a fairly reliable visual cue that a cone rolled leaflet without a “window” has been parasitized by A. polychrosidis because the other parasitoids in the complex emerge after the cone roller has pupated and created its escape route “window”. Unrolling the leaflet confirms the presence of A. polychrosidis if its telltale “hammock-like” cocoon is present (Fig. 3). This type of cocoon is thought to be a defense against hyper-parasitism but as we found (Wist and Evenden 2013) it doesn’t always work out for A. polychrosidis!

Fig. 3 Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) adult above its cocoon and beside the leaflet cone rolled by Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae). Note the emergence hole in the side of the leaflet that the wasp chewed to escape.

Fig. 3 – Apanteles polychrosidis Viereck (Hymenopetra: Braconidae) adult above its cocoon and beside the leaflet cone rolled by Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae). Note the emergence hole in the side of the leaflet that the wasp chewed to escape.

To assess the percentage of parasitism by this dominant parasitoid I adapted a method that Chris Saunders and I had discussed years earlier for assessing the parasitism of Apanteles sp. on individual trees. For the initial experiment in our paper (Wist et al. 2015) I sampled leaflets to estimate the density of cone rollers on the tree and estimated the percentage of parasitism by A. polychrosidis on two of the common urban species of ash in Edmonton. Apanteles polychrosidis parasitism was higher on black ash, F. nigra, at all sites than it was on green ash, F. pennsylvanica, which can be called differential parasitism and it seems to be common when host larvae develop on two or more host plants, but had not been well studied on trees. When host density and parasitism were graphed, the relationship of parasitism to host density could be visualized by the slope of the regression line, and on black ash, parasitism was independent of host density on black ash, but was negatively density dependent on green ash. In other words, on black ash parasitism is always high but on green ash, parasitism declines as the density of C. fraxinella increases. I ran the same experiment on green and black ash trees in Saskatoon with the same results but we chose to leave them out of the final version of the manuscript.

I was already studying the chemical ecology of C. fraxinella so this was where we looked for an answer to the differential parasitism in the field. I ran a y-tube olfactometer experiment with black and green ash plant material as the attractive source of volatile organic chemicals (VOCs) and this turned out to be rather tricky. I had three treatments that I wanted to test; undamaged leaflets, leaflets damaged by C. fraxinella and leaflets that were mechanically damaged.

First, I tried to bag small seedlings as the source of the plant smell but I couldn’t seal the system well enough to get reliable airflow through the y tube chamber. I had to switch to using leaflets alone which raises the issue of the smell of the leaflets changing once they have been removed from the tree which could be a problem especially in the “undamaged” treatment. I also needed enough female A. polychrosidis hunting for hosts to give me a decent sample size so I had to collect and emerge as many “un-windowed” cone-rolled leaflets as I could in the summer, and hope that they would actually mate and want to oviposit into host larvae at this point in their lives. Another issue was that I couldn’t coax my summer emerged C. fraxinella to lay eggs on ash seedlings to create leaf-mined treatments. Fortunately, a subset of the local population of C. fraxinella had developed a second generation on the new ash leaves that a dying ash tree puts out in July in an effort to save itself. These leaflets became my leaf-mined treatment. Over two seasons with a lot of juggling and timing of three species I was able to gather enough experimental data with the olfactometer to discover that female A. polychrosidis were differentially attracted to the volatile odour cues from each ash species. In green ash tests, they were attracted to the smell of green ash alone but in black ash tests, they were not attracted unless the leaflets were attacked by its host. The “icing on the manuscript cake” was the GC-EAD results by co-authour Regine Gries that showed that 13 compounds in the volatile profile of ash could be sensed by the antennae of A. polychrosidis, and some of them are known to increase in response to herbivore damage.

I’d say that this manuscript is a starting point for further studies on this interesting parasitism system and could accommodate projects from chemical ecology and landscape ecology perspectives at the very least. In fact, Danielle Hoefele and Sarah McPike have already begun projects in Maya’s lab on the FraxinusCaloptilia-Apanteles system. In case you’d like to know more, here is the link to our manuscript published in Arthropod-Plant Interactions.

1 Comment

From inquiring students to published authors: an adventure in the Arctic

by Amanda Boyd and Kate Pare

The field course in Arctic Ecology (BIOL*4610), offered periodically by the University of Guelph, explores ecological relationships in a sub-arctic environment. Based out of the Northern Studies Research Center, the 2-week course takes place in Churchill Manitoba and the surrounding area. That was what we, the students, knew going into the course. What we didn’t know was that course would be, for many of us, a once in a lifetime experience!

Students in the Arctic Ecology field course learning from Hymenopterist extraordinaire Alex Smith

Students in the Arctic Ecology field course learning from hymenopterist extraordinaire Alex Smith. (Photo by Eric Scott) 

There are only three ways of travelling to Churchill, Manitoba: by boat, by plane or by train. Since we wouldn’t be taking the boat route, two options were left: an hour and forty-minute flight, or a three-day journey by rail. The latter is where most of our adventures began (particularly when some of us didn’t purchase a sleeper ticket). There is much to be learned from a long northward trek, from changing ecosystems and changing cultural environments to increasing price tags. Eventually though, the journey’s end came with a comfortable bus ride and an incredibly delicious meal at the Northern Studies Centre. From there on out, it was down to business.

The first week of our course was spent roaming the rugged landscape, learning about the diverse ecosystems the region has to offer while simultaneously trying to prevent ourselves from being carried off by the swarms of (seemingly) abnormally-sized horse flies. We visited sphagnum bogs, fens, the coast (which may have involved kayaking with belugas), a cranberry-laden moraine and the northern extent of the boreal forest. We explored Krummholtz and bluffs, learned that sedges have edges and learned to always be on the lookout for polar bears (at least 2 bear guards please!). The second week however, allowed us the liberty of designing and conducting our own studies.

As a real world example of scientific research in action, the first day of week-two was spent sampling in the footsteps of Robert E. Gregg and collecting ants from his original 1969 study sites (Gregg 1972). Armed with basic instructions on the identification of the 1969 sampled ant species and genera, we visited a total three sites: Cape Merry, the Churchill Welcome Sign, and Goose Creek Bog. At each site, we spent approximately three hours actively searching for ants, breaking open woody debris and digging into moss hummocks. This was true for all but the Goose Creek site where our (brand new bus) tire sprung a leak and we had no choice but to wait there (which may have resulted in a thoroughly sampled population of Odonates) until Alex Smith, one of the instructors walked into town to radio the Churchill Northern Studies Centre for Plan-B transportation. From there it was back to the lab for a crash course on identifying ants to morphospecies, and for many of us, a valuable lesson that all individuals of a species do not look the same (due to individual variation and cryptic diversity). The rest of week-two was spent with groups of students at every site chasing a variety of six-legged, sub-arctic mysteries. Of course, as students of the natural world, no curiosity was overlooked and no opportunity for fun either! Many an hour was spent bluff jumping, polar bear sighting, investigating the Ithaca shipwreck, and in the case of some students, completing a partial reconstruction of an arctic fox skeleton. Needless to say, it was a very short two weeks that passed with discovery and awe.

One of the many species collected - an ant in the Leptothorax muscorum complex, collected at Cape Merry (Photo by Chelsie Xavier-Blower)

One of the many species collected – an ant in the Leptothorax muscorum complex, collected at Cape Merry (Photo by Chelsie Xavier-Blower)

Going into our field course, I’m not sure any of us thought we would come out of it as published authors. For many of us that participated, the Arctic Ecology field course provided the first real opportunity to actively participate in research outside of the university. The idea that a few days’ worth of collections could be turned into a scientific paper was almost unimaginable. The resulting paper was the first publication that any of us had contributed to. It was exciting to receive the manuscript drafts, and then paper proofs and to know that even aspiring researchers like us could contribute to the knowledge of the scientific community.

During the course, we took high-resolution panoramic GigaPan photographs of the areas we sampled (Smith et al 2013) – you can explore those here. All the DNA barcodes we generated during the course are publicly available for download and exploration. Finally, we wrote about using GigaPans in our Churchill adventures in an article for GigaPan Magazine.

Members of the Arctic Ecology Field course 2015

Students of the Arctic Ecology Field course (now published authors!)(Photo by Eric Scott)

Acknowledgements

We would like to thank LeeAnn Fishback and the staff of the Churchill Northern Studies Centre (https://www.churchillscience.ca/) for all their hospitality and help in Churchill. Support from the CREATE Lab Outreach Program at Carnegie Mellon University, the Learning Enhancement Fund of the University of Guelph (http://www.lef.uoguelph.ca/) and the Fine Foundation helped provide funds for GigaPan-ing and DNA barcoding during the course. Support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) to Alex Smith and Sarah Adamowicz provided support and infrastructure.

References

Gregg, R.E. 1972. The northward distribution of ants in North America. The Canadian Entomologist, 104: 1073–1091

Smith, M. Alex, S. Adamowicz, Amanda Boyd, Chris Britton-Foster, Hayley Cahill, Kelsey Desnoyers, Natalie Duitshaever, Dan Gibson, Steve James, Yurak Jeong, Darren Kelly, Eli Levene, Hilary Lyttle, Talia Masse, Kate Pare, Kelsie Paris, Cassie Russell, Eric Scott, Debbie Silva, Megan Sparkes, Kami Valkova (2013) “Arctic Ecology” GigaPan Magazine Vol 5 Issue 1. http://www.gigapanmagazine.org/vol5/issue1/  (students ordered alphabetically)

Smith, M. Alex, Amanda Boyd, Chris Britton-Foster, Hayley Cahill, Kelsey Desnoyers, Natalie Duitshaever, Dan Gibson, Steve James, Yurak Jeong, Darren Kelly, Eli Levene, Hilary Lyttle, Talia Masse, Kate Pare, Kelsie Paris, Cassie Russell, Eric Scott, Debbie Silva, Megan Sparkes, Kami Valkova S. J. Adamowicz  (2015) The northward distribution of ants forty years later: re-visiting Gregg’s 1969 collections in Churchill, Manitoba, Canada. The Canadian Entomologist. http://dx.doi.org/10.4039/tce.2015.53

Student opportunities at the 2016 International Congress of Entomology

151822display

Next September, the largest-ever scientific meeting of entomologists will take place at the International Congress of Entomology (ICE) in Orlando, Florida. For graduate students and early-career entomologists, it will be a fantastic opportunity to meet your peers from all over the world, present your research in a high-profile setting, and scout out potential study or career opportunities.

While you might be thinking that it’s an awful long time from now, and that there’s that pesky thesis that you have to get written, there are two important deadlines coming up soon that you should be aware of:

1. Travel Awards for Students and Early-Career Professionals

The international branch of the Entomological Society of America is giving a total of $50,000 worth of awards to students from outside the USA to attend ICE 2016.

Find detailed information about these awards here. Note that you need to be a member of the ESA to apply, that and membership will cost you between $50 and $150. If you plan to apply, you need to act fast – the deadline for application is September 1st, 2015.

Also note that the Entomological Society of Canada will also have a student and early-career professional travel awards program to assist with attendance at ICE. Information about these awards will be available soon!

2. The International Graduate Student Showcase (IGSS)

The Graduate Student Showcase, which has become a staple of ESC annual meetings, is coming to ICE 2016! Don’t miss this opportunity to present your finished research project alongside the top graduate students in entomology from around the world.

To apply, you need to be defending your MSc or PhD thesis between September 30, 2015 and September 30, 2016.

Find more information about the IGSS here.

The deadline for IGSS applications is October 31, 2015.

1 Comment

When you’re a spined soldier bug laying eggs, they can be “Any Colour You Like”

By Paul Abram
PhD Student, Université de Montréal

When Pink Floyd recorded their epic, psychedelic instrumental “Any Colour You Like” for the classic album Dark Side of the Moon, were they inspired by a predatory stink bug?

Three spined soldier bugs happily eating a mealworm.  Their voracious appetite makes them a widely-used biological control agent of insect pests (Photo credit: Andrea Brauner).

Three spined soldier bugs happily eating a mealworm. Their voracious appetite makes them a widely-used biological control agent of many different insect pests (Photo credit: Andrea Brauner).

Well … probably not.

The spined soldier bug (Podisus maculiventris), can’t actually lay any colour of egg it likes – but the real range of possibilities is pretty impressive.

The range of possible egg colours that can be laid by a single female spined soldier bug (Photos: Paul Abram/Eric Guerra)

The range of possible egg colours that can be laid by the spined soldier bug (Photo credit: Paul Abram/Eric Guerra)

Almost three years ago, when I started working with stink bugs and their parasitoid wasps, I noticed this astounding variation in the colour of the eggs of the spined soldier bug. I was surprised to find that nobody had looked into the cause of this variation or its potential functions. In fact, the function of insect egg colouration seems to have been a bit neglected in general. While I was initially hesitant to start on the dangerous path towards a PhD “side-project” (code for “I would like to take much longer to finish my degree, please”), I eventually caved.

In 2013, I was visiting a colleague’s lab where newspapers are used as a laying substrate for these bugs, and I noticed that there seemed to be a loose correspondence between the colour of the egg masses and the darkness of the paper, especially in high-contrast places like crossword puzzles. I wondered – could stink bugs actually adjust the coloration of their eggs to match the darkness of the laying surface? If so, this would be the first case of an animal able to selectively control the colouration of its eggs.

Back in Montreal a few months later, I started working on this question with an undergraduate summer student, Marie-Lyne Desprès-Einspenner. We did the simple experiment of putting individual females in Petri dishes painted white, black, or black on one side and white on the other.

Petri dishes housing spined soldier bug females, along with a mate, prey, and some green bean.  Everything a stink bug needs! (Photos: Paul Abram)

Painted dishes housing spined soldier bug females [right], along with a mate, prey, and some green bean [opened dish shown on the left]. (Photos: Paul Abram)

To our surprise and excitement, we got some nice results. First of all, it was clear that individual stink bugs could lay eggs across the whole spectrum of egg colours, and that the egg colour variation wasn’t just a result of advancing egg development. Additionally, stink bugs tended to lay darker eggs in the black petri dishes than the white ones; and, in the bi-coloured dishes, overall darker eggs on the black side than the white side. These effects were subtle, though, compared to the most important and unexpected factor: where the eggs were laid. Eggs tended to be lighter when laid on the underside of the lid (which was lit up from above) than when laid on the side or the bottom of dishes.

So, individual stink bugs can lay eggs of a range of colours, depending on where they are laying. Our next question was: how does this capability express itself on natural laying surfaces? We did some experiments using soybean plants, and figured out what seems to be the key to this whole thing: the stink bugs have a very strong tendency to lay darker-coloured egg masses on the tops of leaves (which have a relatively low surface brightness, like our black dishes), and lighter-coloured masses on leaf undersides (which have a high surface brightness due to light passing through from above, similar to the lids of our white dishes).

Light eggs laid on a leaf underside (upper panel), and dark eggs laid on a leaf top (lower panel). Photo credit: Leslie Abram.

A light egg mass laid on a leaf underside (upper panel), and a dark egg mass laid on a leaf top (lower panel). Photo credit: Leslie Abram.

Because leaves are excellent filters of ultraviolet (UV) radiation from the sun (protecting most insect eggs, which are usually laid on leaf undersides), and dark pigmentation often acts as a ‘sunscreen’ in nature, we wondered if dark colouration would protect developing stink bug eggs from a lethal sunburn when they are laid on the tops of leaves. Eric Guerra-Grenier (another undergraduate researcher in the lab) and I tested this in the lab by exposing differently coloured eggs to different doses of sun-mimicking UV radiation.

The results were crystal clear – darker eggs are better-protected from UV radiation than light eggs, with a strong dose-dependency with respect to UV radiation intensity and egg colouration.

This was an exciting find, but begged the question: what is the pigment that makes eggs dark, anyway? The clear answer was that it must be melanin, which is responsible for most dark animal pigmentation, including in us humans, and is also really good at protecting against UV radiation damage.

Eric and I did the obvious thing, sending hundreds of (freezer-killed) stink bug eggs to two melanin biochemists in Japan. Our collaborators ran a suite of tests to confirm that the egg pigment was melanin. But…it turned out that the egg pigment wasn’t melanin! Right now, we simply don’t know what this “mystery pigment” is (maybe something totally new to science?).

As is common in research, we are left with more questions than answers. What is the physiological mechanism that allows stink bugs to selectively apply pigment to eggs? In evolutionary terms, why lay eggs on UV-exposed leaf tops in the first place? And why still lay some light eggs on leaf undersides? Could the pigment also have a role in camouflage, thermoregulation, or water retention? Do other, closely related (or why not distantly-related) insect species also have this capacity? We’re currently working on some of these questions, and I hope that we get to try to answer all of them eventually.

If you’d like, you can find a lot more details about our findings, including the answer to “does UV radiation affect the control of egg colour?”, in a newly published paper (remember to listen to the accompanying song while reading) – and stay tuned for more results in the coming months.

In the meantime, fellow entomologists and naturalists, look closely at insect eggs – is there anything interesting about how they’re coloured/patterned?

A spined soldier bug female having a drink and contemplating the future of insect egg colour research (Photo credit: Leslie Abram)

A spined soldier bug female having a drink and contemplating the future of insect egg colour research (Photo credit: Leslie Abram)


Postscript:

I would like to suggest additional Pink Floyd song/entomology paper pairings (feel free to suggest your own!):

“Breathe” //  “Active Regulation of Insect Respiration”

“Run Like Hell” //  “Mechanics of a rapid running insect: two-, four- and six-legged locomotion”

“Mother” // “Parental care trade-offs and the role of filial cannibalism in the maritime earwig, Anisolabis maritima

“Echoes” // “The adaptive significance of host location by vibrational sounding in parasitoid wasps”

“Time” // “Short interval time measurement by a parasitoid wasp”

“Us and Them” // “Boundary disputes in the territorial ant Azteca trigona: effects of asymmetries in colony size”

“Comfortably Numb” // ”Effects of carbon dioxide anaesthesia on Drosophila melanogaster

1 Comment

The flight of the backswimmer: dispersal behaviour in a freshwater insect

By Celina Baines

Have you ever thought about what a pond-dwelling insect might do if it doesn’t like the pond it lives in? People generally assume that these insects are stuck where they are, but actually, many freshwater insects have wings and can fly. This movement between ponds is an example of a process known as dispersal.

Backswimmers, for example, are insects that live in ponds and streams (and sometimes even swimming pools!). Backswimmers have a characteristic way of swimming – on their backs, just under the surface of the water, using their hind legs to propel themselves. It makes them look a little like they are doing the backstroke (hence their common name!). But they also have wings, and can fly between ponds.

A top view of a backswimmer swimming. Backswimmers can often be seen swimming just under the surface of the water, ventral side up. Photo credit: Shannon McCauley.

A top view of a backswimmer swimming. Backswimmers can often be seen swimming just under the surface of the water, ventral side up. Photo credit: Shannon McCauley.

We know from observing these insects that not all backswimmers make the same decisions about whether to disperse. Some individuals spend their whole lives in the ponds they are born in, and some individuals move to new ponds. So why do some individuals stay and some leave? One factor that could influence dispersal decisions is the quality of the pond. Pond “quality” could depend on many things, including the risk of being eaten by predators like fish. Dispersing can be a great way for organisms to avoid habitats that will be bad for them or their offspring.

Once a backswimmer has decided that it wants to disperse, it then has to decide whether it is strong and healthy enough to fly. This could be another factor that determines whether an individual decides to stay or go.

In the summer of 2013, I conducted a field experiment to learn more about how backswimmers make dispersal decisions. I wanted to test whether dispersal was induced by fish. I also wanted to test whether body condition (basically, the general strength and health of an organism) influences dispersal decisions.

I started by collecting backswimmers from a pond at the Koffler Scientific Reserve. That’s a research site owned by the University of Toronto, where I’m a graduate student.

This is me collecting backswimmers from a pond at the Koffler Scientific Reserve. Photo credit: Chris Thomaidis.

This is me collecting backswimmers from a pond at the Koffler Scientific Reserve. Photo credit: Chris Thomaidis.

I brought the backswimmers back to a lab at the University of Toronto. Because I wanted to test the effects of body condition on dispersal, I first had to manipulate the backswimmers so that they had different levels of body condition. I did this by carefully controlling how much food each backswimmer got to eat.

Backswimmers are carnivores, and they aren’t very picky. For this experiment, I fed them fruit flies, because it’s really easy to get lots and lots of fruit flies. So, in what turned out to be one of the most back-breakingly tedious jobs I’ve ever performed for science, I (and many uncomplaining assistants) counted out thousands of individual fruit flies to feed to the backswimmers. Each backswimmer was housed in its own little cup, and received a specific (and carefully counted) number of fruit flies to eat every day. Here’s what the hundreds of drink cups looked like, colour coded and full of bugs.

Left: Cups housing backswimmers at the University of Toronto. Right: A backswimmer in its cup.

Left: Cups housing backswimmers at the University of Toronto. Right: A backswimmer in its cup.

After a few weeks of controlling the backswimmers’ diets, it was time to bring them outside to see if they would fly. I set up some artificial ponds in a big field. These “ponds” are actually just watering tanks that farmers use for cows and horses, but I added algae and artificial plants to make them more like natural ponds. Since I also wanted to test whether backswimmers are scared away by fish, I added a fish to half of the tanks. I put the fish in cages, and that way, the backswimmers could tell there was a fish in the tank (they could see and smell the fish), but the fish couldn’t actually eat the backswimmers.

This is me, checking the artificial ponds for backswimmers. Photo credit: Betty Dondertman.

This is me, checking the artificial ponds for backswimmers. Photo credit: Betty Dondertman.

Then I put the bugs in the tanks, and waited. After a couple days, I went back to the tanks and checked to see which backswimmers were still in the tanks, and which ones had flown away.

Firstly, I found that backswimmers are scared away by fish; they are more likely to disperse when a fish is in their pond.

I also found that the backswimmers with high body condition are more likely to fly, probably because they are strong fliers and have the best chance of successfully finding a new pond.

Both of these results were really cool and answered some questions for us about how backswimmers make dispersal decisions. But they might also tell us a little about how other organisms move around in natural ecosystems. Dispersers are the only individuals that can find new ponds and start new populations. If dispersers tend to be the strongest and healthiest individuals, that’s great for native species that we want to encourage to start new populations. But having strong, healthy individuals from exotic species start new populations is probably bad news. Dispersal can therefore have important consequences, which is why we need to understand more about how and why organisms disperse.

For more information about my study, check out the recent publication:

Baines, C. B., McCauley, S. J., & Rowe, L. (2015). Dispersal depends on body condition and predation risk in the semi‐aquatic insect, Notonecta undulata. Ecology and Evolution 5(12): 2307–2316

Canadian Entomology Research Roundup: April – June 2015

As a graduate student, publishing a paper is a big deal. After spending countless hours doing the research, slogging through the writing process, soliciting comments from co-authors, formatting the paper to meet journal guidelines, and dealing with reviewer comments, it’s nice to finally get that acceptance letter and know that your work is getting out there. The ESC Student Affairs Committee is happy to be posting a fourth roundup of papers authored by Canadian graduate students. Stay tuned to the ESC blog for some full length guest posts from some of the students below in the coming weeks!

Have a look at what some entomology grad students in Canada have been up to recently! Articles below were published online from April through June 2015.

Forestry

Seehausen et al. found that parasitism of hemlock looper Lambdina fiscellaria (Guenée) (Lepidoptera: Geometridae) pupae was significantly reduced in plots with high partial cutting intensities (40%). To sustain parasitism rates in forest stands vulnerable to hemlock looper defoliation at naturally high levels, it is recommended to refrain from high intensity partial cutting. Article link

Apechthis Ontario parasitizing a hemlock looper pupa (Photo credit: Lukas Seehausen)

Apechthis ontario parasitizing a hemlock looper pupa (Photo credit: Lukas Seehausen)

During its recent outbreak starting in the early 2000s, the mountain pine beetle destroyed huge areas of lodge pole pine forests in BC and Alberta while also expanding its geographic range east and north. More recently, the beetle has been confirmed to be attacking and reproducing in a novel host, jack pine, which is distributed from Alberta to the Atlantic coast. New research by Taft et al. looks at how specific chemicals in jack pine trees that affect mountain pine beetle vary in jack pine across its range. Article link

Another study from the Erbilgin lab at University of Alberta by Karst et al. revealed that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms. Article link

Physiology and Genetics

Proshek, Dupuis, et al. found the genetic diversity of Mormon Metalmark species complex are more diverse than traditional morphological characters. Article link

A Lange Metalmark butterfly (Photo: Wikimedia Commons)

Oudin, Bonduriansky, and Rundle at the University of Ottawa found the amount of sexual dimorphism present in antler flies is condition-dependent. Article link

Nearby at Carleton University, Webster et al. studied the edge markings on moths to show they can provide camouflage by breaking up their body outline. Article link

Another study from Carleton University, from Hossie et al., showed that predator-deterring eyespots tend to appear on larger-bodied caterpillars and that smaller species are better off remaining undetected. Check out the detailed blog post about this study on the lead author’s blog, and a great photo gallery of caterpillars with eyespots! And here’s the link to the Article.

Jakobs, Gariepy, and Sinclair established that adult phenotypic plasticity is not sufficient to allow Drosophila suzukii to overwinter in temperate habitats. Article link

Insect Management

Part of the PhD work of Angela Gradish focused on the White Mountain arctic butterfly (WMA), a very rare butterfly occurring only on the alpine zone of Mts. Washington and Jefferson in New Hampshire. Despite its threatened status, little was known of the WMA’s population structure, distribution, and behaviour. So Gradish grabbed a net and headed up Mt. Washington, where she spent part of two summers collecting WMA samples for genetic analyses while performing a mark-release-recapture study on the population. She was the first to use genetic analyses to study the WMA, the results of which are presented here.  Find the results of the mark-release-recapture study here.

Angela Gradish collecting

Collecting butterflies on Mount Washington (photo credit: Angela Gradish).

Marshall and Paiero, from the Marshall lab at University of Guelph, gives a new record of a Palaearctic leaf beetle, Cassida viridis, which has been present in Ontario since 1974. Article link

Maguire et al., from the Buddle lab at McGill University, found destructive insect herbivores can positively or negatively impact ecosystem services depending on outbreak conditions. Article link

Biodiversity

Ernst and Buddle discovered that the diversity and assemblage structure of northern carabid beetles show strong latitudinal gradients due to the mediating effects of climate, particularly temperature. Article link

Behaviour and Ecology

The Luong lab at University of Alberta observed that ectoparasitic mites have deleterious effects on host flight performance of Drosophila species. Article link

Therrien et al. from the Erbilgin lab at the University of Alberta found that bacteria can influence brood development of bark beetles in host tissue. Article link

Desai, Kumar, and Currie from the Currie lab at the University of Manitoba conducted the first major baseline study of viruses in Canadian honey bees to show that deformed wing virus has the highest concentration among worker bees. Article link

Baines, McCauley, and Rowe from the Rowe lab at University of Toronto showed that dispersal is a positive function of body condition in backswimmers, but not interactive with predation risk. Article link

Backswimmers can often be seen swimming just under the surface of the water, ventral side up (Photo credit: Shannon McCauley).

Backswimmers can often be seen swimming just under the surface of the water, ventral side up (Photo credit: Shannon McCauley).

Strepsiptera is a peculiar and enigmatic insect order. All are entomophagous endoparasitoids. Unusually for parasitoids, they possess a very broad host range, encompassing 7 orders and 34 families of insects, in various habitats worldwide. Despite their broad host range, and cosmopolitan distribution, surprisingly little is known about their biology. The gaps in knowledge of this group has led to many generalizations about their biology and behaviour. Only recently are studies beginning to uncover a hitherto unforeseen diversity in reproductive strategies. In this review, Kathirithamby, Hrabar, and colleagues discuss the reproductive biology of Strepsiptera: what is known, and what mysteries remain to be solved. Article link

In the Sargent lab at University of Ottawa, Russell-Mercier and Sargent investigated herbivore-mediated differences in floral display traits and found that they impacted pollinator visitation behaviour, but not in female reproductive success. Article link

Techniques

Can you use gut content DNA analysis of a staphilinid beetle to track predation of spotted wing drosophila? Here’s what Renkema et al. found.

Rosati et al., from the Vanlaerhoven lab at University of Windsor, discuss using ImageJ software to quantify blow fly egg deposition in a non-destructive manner. Article link

We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup. Find the previous edition here: https://escsecblog.com/2015/05/04/canadian-entomology-research-roundup-march-2015-april-2015/. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com. You can also send us photos and short descriptions of your research, to appear in a later edition of the research roundup.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students

2 Comments

The joys of insects at dawn

IMG_9803

When is the last time you got up at dawn to see some insects? Never? Well let me tell you, it is an absolutely fabulous time to get out and see what is really happening in the world. Everyone knows that the dawn is the time for going out to see birds, but the birds are really just a proxy for the insects! They are out foraging their little feathers off in an effort to provide their chicks with tasty tasty bugs!

The dawn hours offer the opportunity to see insects and spiders that are just waking up, still cool from the night. I take advantage of this to go out and photograph them, when they are still. I also use the beautiful natural light to my advantage in the pictures.

IMG_9790

A gorgeous Enoplognatha ovata on some grasses in Richmond BC

IMG_9846

Ammophila wasps are too active to shoot well in the day, but at dawn they are easy and beautiful subjects

IMG_9867

Mixing the dawn light is easy with any kind of diffused flash. The sunlight is dim enough that a flash in close proximity to the subject can illuminate details that turn what would be a silhouette into a lovely shot.

IMG_9893

The one danger is lens flare, but as instagrammers know, this makes a shot more “artistic”. I find I am often pleasantly surprised by some of the flare effects.

IMG_9934

Large numbers of aggregating wasps may be reducing their individual vulnerability to those hungry birds…

IMG_9947

The spiders often attempt crypsis rather than jumping off their webs. It works well for the arthropod photographer!

IMG_9971

Coelioxys cuckoo bees are a welcome find anytime, and at dawn are super cooperative subjects!

IMG_9981

Dawn light can also be used for highlighting hairs.

IMG_9989

Dawn is an epehmeral time, and staying out with your subjects allows you to see them wake up and start their day.

2 Comments

Missed Mandate, Missed Biology: The ongoing “Mother Canada” debacle in Cape Breton Highlands National Park

Opinion Piece – M. Alex Smith, Department of Integrative Biology, University of Guelph (salex@uoguelph.ca; @Alex_Smith_Ants; www.malexsmith.weebly.com)

—-

Like many Canadians, I have been hearing more and more about the so-called “Mother Canada” development in Cape Breton Highlands National Park (CBHNP). Proposed by a combination of private funding in partnership with the federal government, this enormous 10-storey memorial is meant to “… be a place for remembrance and gratitude” to Canadians who have “fallen as a result of war and conflict”. Parks Canada has expressed direct support for this monument through actual monetary donations. The erection of such a memorial within a Canadian National Park has garnered much recent interest in the Canadian and international press.

Beyond any aesthetic concerns people may have about the specific plans, in my opinion, there are two critical problems with this monument. The first was pointed out in a Globe and Mail editorial of June 24 2015: it is redundant. Every town and city in Canada already has a memorial to those who have served and sacrificed. My second objection is a combined biological and sociological one. It concerns the location of a private funded monument within a Canadian National Park, where it appears very unclear what the ramifications of that action will be on the fauna in and around the proposed site. The mandate of Parks Canada is elegantly expressed in its charter, “To protect, as a first priority, the natural and cultural heritage of our special places and ensure that they remain healthy and whole” while fostering “public understanding, appreciation and enjoyment in ways that ensure the ecological and commemorative integrity of these places for present and future generations”. Indeed, 26 former senior Parks Canada managers wrote an open letter to the Minister of Environment Leona Aglukkaq detailing their objections and that such a plan, “is in violation of the site’s Wilderness Zone designation as detailed in the Management Plan for the Park”.

Beyond the effects of the actual physical construction on the park environment, the monument will potentially increase tourist traffic to the area. How will these changes affect the biota (both animal and plant) of the immediate area? Exactly how well known is that fauna? How was the effect on the sites and the adjacent park environment determined?

A detailed impact analysis was completed by Stantec Consulting Limited who concluded that the effects of the development are, “generally predicted to be negligible to moderate in magnitude”. Conclusions regarding the effect of the construction and development on the “wildlife” of CBHNP were based on a single terrestrial field survey of the locality and a consultation of a CBHNP sightings database. (Stantec is actually listed as a Partner and Supporter of the development). In the Stantec impact analysis, “wildlife” is exclusively mammals and birds. As an ecologist whose professional and personal life is replete with instances of being overwhelmed and delighted by the diversity of arthropods living coincidentally (and cryptically) with their better-studied vertebrate relatives, this raised some concerns.

So what can I offer? Well in 2009, I spent a wonderful time collecting arthropods in CBHNP as part of the BioBus program out of the Biodiversity Institute of Ontario at the University of Guelph. In fact, four colleagues and I spent a night collecting insects at a site only 3 km away from the proposed development (Black Brook and the nearby Jack Pine Trail). The Jack Pine trail was particularly beautiful! The trail goes through a forest of Jack Pine that is more than 200km away from the rest of its range and has survived fire and spruce budworm infestation. At any rate, since all the data is publicly available online (dx.doi.org/10.5883/DS-ASCBHNP), I thought this would be an opportune time to explore those records in light of the planned “Mother Canada” development.

 

Figure 1: A high resolution GigaPan panorama taken at the Black Brook collection site (http://gigapan.com/gigapans/29312).

Figure 1: A high resolution GigaPan panorama taken at the Black Brook collection site (http://gigapan.com/gigapans/29312).

 

Figure 2: The collection team earlier in the trip in Terra Nova National Park Newfoundland.

Figure 2: The collection team earlier in the trip in Terra Nova National Park Newfoundland.

It was a beautiful night in 2009 (Jul-21) at Black Brook where we collected arthropods using two common methods (UV light (which means lots of moths!) and free-hand active search using insect nets). That night, in about four hours of collecting, we came away with 363 specimens from nearly 200 species (191 named and provisional species based on their DNA barcodes). To put this number in context, CBHNP has 200 species of bird – a total nearly matched for arthropods by our single nights work at one location! This diversity is only a small fraction of the diversity of arthropods currently protected by CBHNP. Via these DNA barcodes, (public on BOLD (www.barcodinglife.org, dx.doi.org/10.5883/DS-ASCBHNP) we can compare them to the > 4 million DNA barcode records representing >400,000 species worldwide on this database.

What we find from this comparison is that some of these species may be exceedingly rare. Despite concentrated collections in this and other National Parks before and since this night* there are four species which have been found only once out of these millions of records. While this diversity is currently protected by Parks Canada, it is within 3 km of the proposed “Mother Canada” development. It is unclear how the changes in traffic and construction from the development will affect this protected diversity.

Why bring this up now? What use is a rapid analysis of a single night’s collections? I decided to bring it up to call attention to numerous small and cryptic species in and around the location of the proposed development about which we know very little. Going ahead with an enormous private development within a National Park is a mistake that flies in the face of the mandate of Parks Canada – and does so without good evidence that it would not have negative effects on the diversity of animals that it was created to protect.

 

Figure 3: This neighbor-joining tree is a graphical representation of the diversity of nearly 200 species of arthropods collected at Black Brook in July 2009. The taxa are colour coded and are followed by the number of specimens we caught.

Figure 3: This neighbor-joining tree is a graphical representation of the diversity of nearly 200 species of arthropods collected at Black Brook in July 2009. The taxa are colour coded and are followed by the number of specimens we caught.

John Barber (a freelance journalist from Toronto) closed his recent article in the Guardian newspaper with a marvelous quote from Valerie Bird, a WWII veteran and resident of Cape Breton, “It is vulgar and ostentatious,” she said. “It certainly doesn’t belong in a national park, and I don’t think its going to do a darn thing for veterans.” “I think the idea of this horrible thing offends veterans,” she added. “I find it difficult to find words. This is a monstrosity.”

Not simply a monstrosity – but one contrary to of the principle mandate of Parks Canada, “to protect, as a first priority, the natural and cultural heritage of our special places and ensure that they remain healthy and whole”. Ultimately, this is the essence of the problem. This issue is more than a simple discussion regarding the aesthetics of a >$25 million, >25-metre tall conglomeration of private and corporate citizens (in apparent partnership with our federal government). If a private group wants to erect a memorial on private grounds and can raise the money for their monument – it is certainly their prerogative. This is a critical discussion about the mandate of Parks Canada and specifically how well they protect the natural heritage resident within that Park.

To place this monument in a National Park is not the right of any private group. To consider placing such a monument in a National Park without careful consideration of the most diverse Park residents (insects, spiders and their kin) is not simply poor planning; it’s poor management and should be stopped.

* -Since that evening in 2009, the BioBus has continued to collaborate with Parks Canada in Cape Breton Highlands National Park and now even more is known about the vast diversity of small and important insects from other areas within this National Park. Collections of arthropods have now been made for 3000 species! For more information about those collections visit the reports section at www.biobus.ca. The author has no current association with the BioBus program. All specimens analysed here are publically available via the public data portal of the Barcode of Life Data System (dx.doi.org/10.5883/DS-ASCBHNP).

Useful websites:

Thanks to Morgan Jackson for helpful thoughts on an earlier draft of this post.
Figure 4 – Shareable infographic outlining information & data presented in this article. Please feel free to circulate.

Figure 4 – Shareable infographic outlining information & data presented in this article. Please feel free to circulate.

Meet the new Editor-in-Chief of The Canadian Entomologist

Kevin-Floate-image-571x500

My name is Kevin Floate.  Back in 1985, I became a member of the Entomological Society of Canada (ESC) and found it to be a warm and supportive organization.  I’ve since undertaken a number of roles, because I enjoy a challenge, but also because I believe that it is important to give back to the Society and the scientific discipline that has given so much to me during my career.  I have served on the Society’s Governing Board and I have Chaired the Publication Committee and what is now the Marketing and Fund-raising Committee.  I am a past-Editor of theESC Bulletin and have been a Subject Editor for The Canadian Entomologist (TCE) since 2002.  In September of last year, I embarked on my most challenging role thus far, that of Editor-in-Chief (EiC) for TCE.

I didn’t make the decision lightly.  The journal has been continuously published since 1868 under the capable hands of a long-chain of EiCs and I wanted to be sure that I could devote the time to do a credible job.  So for six months prior to saying ‘yes’, I job-shadowed the activities of the previous EiC, Chris Buddle.  It also helps that I ‘inherited’ a strong Editorial Board and a very competent Assistant Editor (Andrew Smith).  With their support, my first six months at the helm have been relatively smooth sailing.

So what exactly does it mean to be the EiC?  I’m coming to realize that it means several things.  First, I’m the gate-keeper.  TCE is an international journal that publishes on all aspects of entomology.  We only ask that submissions meet the journal’s publication policy and that they be written well-enough to permit a thorough scientific review.  I assess each new submission and reject those that don’t meet these criteria.  Second, I represent the Editorial Board, who help shape the journal’s publication policy and ensure that manuscripts are reviewed by qualified individuals in a timely manner.  I note that Board members (myself included) are all volunteers and receive no compensation for our efforts.  Third, and equally important, I represent the authors, who have taken the time to develop and complete a project, write up the results and submit their findings.  If we all do our jobs right, the outcome is a quality publication that enhances the entomological literature.  And finally, I am the public face of the journal… the bull’s eye at which authors can aim their emails.

Being EiC also means keeping up with changes in technology.  Consider that the very first article published in TCE is a report of a luminous larva authored by C.J.S. Bethune.  He would be amazed to learn that his article remains readily available 147 years later to journal subscribers across the world.  He would be even more astounded to learn of downloadable PDFs, the internet, computers, and open-access electronic journals (e-journals).  This latter topic is of particular interest to me, both as an author and as the EiC.  If you haven’t educated yourself on the potential pitfalls associated with some of these journals, I urge you to read Open access, predatory publishers, The Canadian Entomologist, and you (Bulletin of the ESC, vol. 45 (3): 131-137).  I co-authored this article as a way to understand why I was being inundated with spam emails from journals I’d never heard of, promising to quickly publish my next paper for a nominal fee.  As part of my on-going education as an EiC in this brave new world of publishing, I’ve also become a regular reader of Retraction Watch and Beall’s Blog.

With changes in technology, we also have improved our services for authors and subscribers.  In 2012, TCE entered into a partnership with Cambridge University Press (CUP).  CUP is the world’s oldest publishing house and, in keeping with the philosophy of the Society, is a not-for-profit organization.  This new partnership has allowed us to drop the requirement for page charges, and papers now appear online as ‘First View’ articles prior to hardcopy publication.  Last year, TCEadopted a hybrid open-access model to give authors the option of making their papers open-access upon payment of a one-time fee.  These changes have increased the number of manuscript submissions, which has allowed us to expand our published content by ten percent as of this year.  Quite frankly, I’d be swamped if it weren’t for the efforts of the Assistant Editor to ensure a high-quality standard of editing for all accepted manuscripts.

Another feature of the journal that is often overlooked is that we accept proposals for review articles, special issues and supplemental issues.  Special issues are papers with a common theme that appear in a regular issue of the journal.  Supplemental issues are issues that are in addition to the normal six per year.  This year is particularly exciting, because we have one of each.  A special issue on Emerald Ash Borer will appear in the June issue.  A supplemental issue on the history of forest entomology in Canada is being published later in 2015.  Be sure to keep an eye open for these issues, and send me an email if you want to discuss ideas for potential reviews, special issues or supplemental issues.

Other than EiC, what is it that I do as a researcher?  My graduate research encompassed pests of wheat in northern Saskatchewan and gall-forming insects in riparian forests of Utah and Arizona.  In 1993, I was hired by Agriculture and Agri-Food Canada to develop a biocontrol program for insect pests of livestock.  Although I’m still with AAFC, my current research has expanded to include insect-symbiont interactions, insect-parasitoid interactions, the ecology of cow dung communities, the non-target effects of chemical residues, and use of molecular methods to barcode insects or characterize their bacterial associates.  I worry a bit about being a “jack-of-all-trades, master-of-none”, but this breadth of experience has served me well in dealing with the large variety of submissions to the journal.  Away from work and depending upon the season, you’ll find me hiking, curling, playing table tennis, reading, gardening and… of course… looking at bugs.

I’m getting more comfortable in my position as EiC, but I’m not complacent about the job.   It takes time to do it well and I promise to take that time to ensure your submissions are dealt with in a timely and respectful manner.  If I don’t, you know where to aim your emails.

Cheers!

Kevin

Click here to read the first issue of 2015 for free.

This article originally appeared on the Cambridge Journals Blog.

Blog posts by students of Biol 202

7571178594_76a41e0e75_z

 

The following is a guest post by Staffan Lindgren

When I started teaching Invertebrate Zoology in the mid-1990’s, students were required to write term papers as one of the tools for evaluation. With a fairly heavy teaching load, this approach became somewhat unmanageable given relatively high enrollment, in particular since I feel that it is important to provide detailed feedback to each student so they can improve on their writing skills. Depending on a student’s skill level, reading, editing and marking a paper can be rather time consuming. After a few years, I therefore reverted to delivering a strictly lecture/lab based course with midterm(s), quizzes and (lab and lecture) finals, essentially the way I had been taught. Two years ago, with considerable trepidation, I decided to step out of my comfort zone and try the blog format. This turned out very successful from a number of perspectives.  The students really liked it, and I derived direct benefit by learning about organisms I would likely never have read or heard about. I also enjoyed marking these blogs, because a blog is shorter, less formal, and leaves a lot of room for personal style when compared to a term paper, while still retaining the requirements of coming up with a suitable topic, as well as finding and citing primary literature effectively.

While many of the blogs were about non-arthropods, a fair number of students chose members of this taxon to write about. In this blog, I highlight student blogs that may be of interest to ESC members.

The first blog by Santana Smith is about a group of marine arachnids that I know very little about, the sea spiders. In her blog, “Mating, Reproduction, and Courtship Behaviour of the Pycnogonids” she corrected that shortcoming to some extent. These are odd creatures, to be sure!

The second blog by Alana Garcia is also about arachnids, more specifically Opiliones or harvestmen:  Opiliones and Parenthood: The Rare Exception of Maternal and Paternal Care in Arachnids. Some of these odd creatures have surprisingly sophisticated and fascinating brood care.

Roscoe Lenardt wrote about hornets The Genus Vespa: Eusocial societies and vicious stings. Every time I watch something about Vespa mandarinia I am happy that we only have the baldfaced hornet where I live!

img_0506

Lena Richter looked at The Camouflage of Praying Mantids. Most entomologists are familiar with the orchid mantis, but did you know that Phyllocrania paradoxa nymphs imitate ants?

Favourites for many students (and many arachnologists as well I should imagine) are the jumping spiders. Jessica Leach discusses Portia species in her blog “Jumping spiders: sex among cannibals”. Portia jumping spiders have been described as among the most intelligent of all arthropods.

Danielle New was fascinated by the use of tiny wasps for biological control, which she described in Trichogramma, a Living Insecticide?” One has to marvel at the ability of these tiny wasps to work for us.

Insects provide inspiration for art, and Nicole Tweddle discusses the use of caddis fly larvae to create jewellery in her blog “Caddisfly (Order Trichoptera) Larval Diversity: The Unlikely Jeweller”. This blog was of particular interest to me, because many years ago at a meeting of the Entomological Society of America, I purchased caddisfly-manufactured earrings for my wife. They were not as exclusive as the ones featured in this article, however.

Madison Wong wrote about the not-so-pleasant effects of centipede venom in “The effect of venom in centipedes.” An arachnophile and former Prince George resident (who described his hobby/business of breeding tarantulas as an interest that went terribly wrong) kindly used to show his animals to UNBC students. One of the few critters he would not handle was his giant centipede!

“Giant Weta” or Wetapunga, the enormous anostostomatid crickets of New Zealand, was the topic for Amandeep Bhatti. Many of these large, flightless insects are threatened and thus of great interest.

168962500_c3e8a53cfa_z

Warren Noronha wrote about another species of jumping spider, Phidippus audax: The Most Daring Spider.” Phidippus species are quite impressive as jumping spiders go. Where I live we have P. johnstoni, a closely related species.

Maeghan Forster provides the first of the 2015 crop of blogs, writing about the fascinating reproductive biology of the emerald cockroach wasp “Eating Your Babysitters: Brooding Behaviors of the Emerald Cockroach Wasp.” I love the way students link behaviours to everyday life, albeit a tad gruesome in this case.

“What in the world is the obelisk posture”, was my first thought when Austin Bartell gave me his proposed blog topic. He explains how dragonfly make use of this posture in “The Obelisk Posture of Dragonflies (Order Odonata)”

Giant Scolopendra centipedes provided the topic for Brittany Fotsch. In “A giant in the under-foliage: Scolopendra gigantea she ends by referring to centipedes as pets: “A 30 cm, 46-legged, bat-killing, venomous critter is not for everyone, but nevertheless even Amazonian giant centipedes need some TLC.”

T. Callander chose to write about the symbiosis of yucca plants and yucca moths in “Yucca moths and yucca plants: the mailman and the mansion” in his entertaining and informative blog, again with an analogy to human life.

IMG_2337

Conrad Taylor’s blog “How I was out-fished by a spider” received a lot of attention when I tweeted the link some time ago. It differs somewhat from most of the other blogs because it is built around a personal experience, and I am sure that is the reason for the attention, at least in part. It certainly makes it an enjoyable read.

The use of transparency in a butterfly caught the interest of Erin Haugland, who wrote about “Greta oto: The Invisible Butterfly. One of the adaptations to make this approach feasible is the presence of submicroscopic bumps change the refractive index of the wing to match the surrounding air. Who knew?

Arachnophobes in New Zealand probably won’t cry over “Latrodectus katipo: The disappearing cousin of black widow spiders, written by Finch Ye. It is comforting to know that even a black widow species will have proponents willing to go to bat for them!

Ian Curtis wrote about “The Reindeer Warble Fly (Hypoderma tarandi): An Arctic Parasite,” an insect I knew a little about from my time in Sweden. I also got the opportunity to communicate with my Norwegian colleague Arne C. Nilssen, who gave us permission to use his fabulous photo of an adult fly. Arne did his Ph.D. research on bark beetles, which is how I knew him.

15274952781_280166d33a_z

An assignment like this is bound to have at least someone looking at honeybees. Jared Peet wrote his blog “Apis mellifera: Un-bee-lievable Communication about these important insects, and in a second course I taught, two students wrote honeybee related blogs.

1161190267_55fc8f58a2_z

Water striders are incredibly successful hemipterans with some very odd mating behaviours. In her blog “Water striders: Strange Mating Rituals and Adaptations,” Rebecca Lerch describes how females protect themselves against overly amorous males.

Another spider blog that attracted attention was “The diving bell spider: reversed sexual size dimorphism” written by Sunjeet Minhas. To my knowledge, the Eurasian Argyroneta aquatica is the only aquatic spider.

Jennifer Noonan wrote about bioluminescence in lampyrid beetles. In her blog “Fireflies: Bioluminescence” she even included a drawing she made of the chemical reaction.

Angela Tsang’s topic was one that really fascinated me. “Commensalism, Mutualism, or Somewhere on the Borderline: A Relationship between a Frog and a Spider” is about a tiny microhylid frog that lives with a tarantula, normally a predator of frogs! Finding an illustration of this was easier said than done, but the author of one of the source articles, Dr. Francesco Tomasinelli, gave us permission to use a fantastic photo.

Aphids have never been my favourite insects (sorry Simon Leather!) although I could have ended up working with them, early on courtesy of Dr. Jan Pettersson in Sweden. It isn’t an organism I would expect a student to pick, but Grant Usick found an interesting angle in his blog Acyrthosiphon pisum: The little pea aphid that could.” Perhaps I have to reconsider?

Brooke Wiebe picked Acacia ants for her blog Pseudomyrmex ferruginea: The ideal tenant.” I still remember a presentation by Dan Janzen about these fascinating little ants and how they have assumed the defense role of Acacia trees.

IMG_3650

In my arachnid lecture, I have to highlight the net-casting or ogre-faced spider, of course. This prompted Fiona Raymond to write her blog “The Hunting Techniques of the Net-Casting or Ogre Faced Spider (Araneae: Deinopidae)”. Arachnophobes miss out on so much neat stuff!

For no particular reason, I left out several blogs about horseshoe crabs and Crustaceans. The Crustaceans covered were fiddler crabs, tongue eating isopods, trapeziid guard crabs, pistol shrimp, pom-pom or boxer crabs, tadpole shrimp, Dungeness crabs, and the goose barnacle. And that leaves out all the other interesting invertebrates, of which cephalopods were the most numerous – no surprise there! Anyway, many students exceeded my expectations by a wide margin, and I really believe that it was the format that gave them inspiration to go the extra mile. I am sure Dezene Huber (who will take over after I retire at the end of this year) will improve on the course. Nevertheless, the students deserve credit for a job well done! I hope you will read a few of these blogs, and that you will enjoy them.

 

 

Heavy metal insects!

prayingmantis_main

PRAYING MANTIS Sterling silver, copper, 14K & 18K gold 18.5″l x 12″w x 9.5″h

 

We have featured the wonderful metalwork of Canadian artist Elizabeth Goluch before, in this awesome interview by Crystal Ernst. Now Ben Proudfoot of Breakwater Studios has produced this wonderful video featuring Elizabeth, her inspiration and work. If you are fascinated by insects aesthetically, or have a love for metalwork and sculpture, this is a great introduction to the artistic process!

Lady Bug from Breakwater Studios Ltd. on Vimeo.

bumblebee_main

BUMBLEBEE Sterling silver, 14K & 18K gold 7″l x 7″w x 4″h

 

Western Specialties

IMG_3652

Living in Western Canada is pretty sweet. Especially here on the coast, we have a plethora of awesome insects that only occur in this region. I am trying to savour these insects while I can, as this fall I am moving to Toronto.

The snakeflies (Raphidioptera) are awesome animals, with a delightfully elongate prothorax and long bladelike ovipositors. These insects are fairly common in the early spring in a Garry Oak meadow not far from my mother’s house, so whenever I am in the vicinity at the right time I keep an eye out for them.

IMG_3654

The most common snakeflies in BC are members of the genus Agulla.

 

IMG_3658-2

What I had not noticed about these insects is how the pronotum wraps around ventrally, like a shield. Also look at the awesome ornamentation on the thorax!

1QJ09QJ0UQRSAQDKSKO0LKA0KKUKQKT06Q2K0K9KGKY05QD0PQEKEQ2K8QUK0KO00KPKKKC06QRS6Q

The larvae of snakeflies are difficult to find, but if you flip over enough rocks or logs, you may just find one!

lift 2

In fact, flipping over logs is exactly how I found this next western treasure…A tiger beetle that may just shatter your image of tiger beetles forever.

IMG_5220

This is Omus dejeani, often referred to by its awesome common name, the greater night-stalking tiger beetle. This is a tiger that could easily be mistaken at a glance for a carabine, if not for the shape of the thorax. This is not a slender, bright, iridescent speedster, but rather a hulking, powerful night terror.

 

IMG_5243

Yes, make no mistake, this is a tiger through and through. The mandibles tell the tale. Bugguide has this to say about the origin of the generic name Omus: Probably from Greek omos (ωμος)- “raw, crude” or “savage, fierce, cruel”

IMG_5249

Regardless of the name, this beetle is a truly impressive beast, though I rarely encounter it. I wonder if it could be because of the introduction of the two similarly-sized invasive carabines Carabus granulatus and Carabus nemoralis.

Anyhow, regardless of where you live, get out and enjoy what your region has to offer. Insect season is in full swing, and life is short. This summer I will keep flipping logs to savour the western specialties!

IMG_5282

Log flipping also brought me an encounter with another western treasure: the rough skinned newt (Taricha granulosa). Who doesn’t love a newt!

 

 

 

 

 

 

Citizen Science on a continental scale

The Editor’s pick from the Feburary issue of The Canadian Entomologist is Crowdsourcing for large-scale mosquito (Diptera: Culicidae) sampling by Elin C. Maki and Lee W. Cohnstaedt. In this blog Lee Cohnstaedt reveals more about the research.

—-

“We were inspired to carry out this study to find out the origin and historical geographic spread of the disease vector mosquito species Culex tarsalis and Aedes vexans. By collecting throughout the entire mosquito habitat range, we generated a snap-shot in time of the distribution of mosquito genes. However, collecting mosquitoes throughout the continental United States was not feasible for one lab. Therefore we used social networking and crowdsourcing to solicit specimens from public health officials, mosquito control experts, and citizen scientists. The response was incredible.

Image courtesy of Sarah Edwards.

Image courtesy of Sarah Edwards.

We hope a lasting impact of this project beyond advancing public health safety for humans and food security for agriculture, is demonstrating the importance and unique capabilities of the public health and mosquito control infrastructure in the United States. These agencies continually face budget cuts because their importance is undervalued. In addition to their public health roles, they contribute substantially to research which is an underappreciated role at improving public safety. This large-scale project would not be possible without the agencies volunteering their time, energy, and expertise. These agencies and individuals contributed to an unprecedented mosquito collection on a continental scale and we feel the North American Mosquito Project will continue to ask big questions with the help of network contributors in the future.

This research will lead to the mosquitos being used for three projects: First, the mosquito samples will be processed for population genetic and phylogenetic analysis to determine mosquito migration currently and historical spread. Second, the movement data from the genetics will be used to parameterize mathematical models to predict the spread of mosquito-borne exotic or emerging pathogens. This will improve public health safety and food security an important role of the agencies that contributed mosquitoes. Third, specific genes unique to certain populations (private alleles) will be examined to understand their role in range expansion.

Entomologists are very friendly people and we were amazed at how kind and helpful people were throughout the project. At least 25% of the network consisted of people we never contacted; other contributors contacted them and asked them to help. Similarly, some individuals collected from huge areas or contacted people to cover entire regions of the country. It makes us proud to be a part of the community and hopefully we can return the generosity with useful information.”

Read the full article here until 22nd May 2015.

Recreational boating affects dragonflies

—-By Aaron Hall—-

A typical adult dragonfly. Note the spiked legs, which are held in a basket shape to help catch prey while flying.

A typical adult damselfly. Note the spiked legs, which are held in a basket shape to help catch prey while flying.

Dragonflies are charismatic insects, and most of us can probably remember chasing them or watching their acrobatic flights when we were children. But what most of us didn’t realize when we were kids, is that dragonflies spend the majority of their lives as toothy, alien-looking predators living underwater before they become adults. Depending on the species, they can live in the water for several weeks up to several years.

A typical larval dragonfly, which feeds on other aquatic animals - and even other dragonflies!

A typical larval dragonfly, which feeds on other aquatic animals – and even other dragonflies!

By living part of their lives in water, and part on land/in the air, dragonflies represent an interesting conservation challenge. Historically, conservation science has focused on single habitats, such as lakes, streams, forests or grasslands. Little attention has focused on incorporating multiple habitat types, such as those required by dragonflies, into conservation, potentially leaving species like dragonflies in danger.

In the Waubaushene area of Georgian Bay (Lake Huron), recreational boating is very common. These boats create waves that can dislodge both adult and larval dragonflies, affecting their ability to find food and avoid predators. The overall number of boats, the speed of these boats, and how close they are to coastal wetlands are the most important factors that determine how impactful boat-generated waves are on dragonflies. My colleagues and I at the University of Toronto investigated how much influence these recreational boats have, relative to more natural processes, on dragonfly communities in Georgian Bay.

A Google Earth image of an area in Georgian Bay. Note the many waves created by boats as they travel through this region.

A Google Earth image of an area in Georgian Bay. Note the many waves created by boats as they travel through this region.

Taking the lead on this project, I counted dragonflies from 17 islands in Waubaushene. The coastal wetlands around these islands are inhabited by dragonflies. The islands studied in this project were selected to represent a range of influence from boats in the area, determined by their distance and orientation to marked boating channels and area marinas.

Aaron Hall counting adult dragonflies at one of the islands in Waubaushene.

Aaron Hall counting adult dragonflies at one of the islands in Waubaushene.

The results show that boats do have an influence on dragonfly communities, providing a link between recreational boating and dragonfly communities. This research provides important insights that can be applied to the protection and conservation of dragonflies, and suggests that some very simple changes in boater behaviour could have big implications. For example, if boats travel slower or further away from dragonfly habitats, they would have less impact. These two factors might be simple to change. In areas where boats mostly stay within marked boating channels, if these channels were moved or adjusted so they are as far away from dragonfly habitats as possible, impacts would be minimized. Additionally, speed limits could be set in these channels to reduce the size of waves created by boats. These simple measures could have a positive impact on dragonflies, which are a critical component in the aquatic and terrestrial foodwebs of this region.

Want to know more? This research is published in the journal Insect Conservation and Diversity. You can also follow me on Twitter @aarohall.

2 Comments

Behavioural observations in nature reveal mating strategies of jumping spiders

—- By Gwylim S. Blackburn & Wayne P. Maddison—-

Animals reveal a lot about their lives simply by the way that they behave. When observed in the wild, they also offer insights to the function of behaviours in a natural context. Capturing these insights just requires a little patience, and attention to the right details.

In a recent study printed in the journal Behaviour, we set out to document Habronattus americanus jumping spider behaviors that would shed light on their ‘mating strategies’—the tactics used by females and males to acquire mates. Specifically, we wanted to know if males show off their flashy displays only to females or also compete directly with each other, if they invest heavily in mate search, and if females are choosy when deciding who to mate with.

HamericanusMaleFront_Blackburn&Maddison

An adult male Habronattus americanus jumping spider travels through beach habitat in British Columbia, Canada. The bright coloration on his face and legs is presented to females during elaborate courtship dances. Photo credit: Sean McCann.

To pursue these issues, we followed 41 adults for up to 30 minutes each, and we also staged interactions between an additional 36 male-female pairs, in natural habitat.

Typical Habronattus americanus habitat is fairly flat, well-drained, and sparsely covered with plants, sticks, or pebbles. Photo credit: Maxence Salomon

Typical Habronattus americanus habitat is fairly flat, well-drained, and sparsely covered with plants, sticks, or pebbles. Photo credit: Maxence Salomon

The behaviours of both sexes pointed quite strongly to indirect male competition for choosy females. Males did not display to (or fight with) each other. Instead, they travelled far and wide, eating nothing but displaying to every female they met. Females, on the other hand, focused on hunting rather than travel, and they almost never permitted copulation despite the vigorous courtship efforts of males.

Collectively, these behaviours supply deeper lessons than their individual functions; they also indicate how natural selection might shape several of the traits involved. In particular, our findings suggest that female mate choice may be the key source of selection favouring the evolution of male display traits.

An adult female Habronattus americanus jumping spider in natural beach habitat. Females are avid hunters. Photo credit: Sean McCann

An adult female Habronattus americanus jumping spider in natural beach habitat. Females are avid hunters. Photo credit: Sean McCann

The apparently high investment by males in mate search also represents a potential factor shaping female mate preferences. In a variety of other species, mate search costs have been shown to provide a way for females to judge the quality of prospective mates. This is because males who are able to pay those costs while still producing an impressive display can make better fathers (e.g., by providing better parental care, or by passing along advantageous genes to their offspring). To determine if this is the case in H. americanus, further research will be needed to see how male condition is linked to the quality of their displays and the success of their offspring.

The Habronattus jumping spiders are famous for their stunning array of male displays. It would be fascinating to know how mating strategies, and the natural surroundings in which they unfold, have influenced this diversity. Behavioural observations of different species in the wild will be essential for getting at this question.

1 Comment

Decoding the love songs of mate-seeking male bark beetles

—–By Amanda Lindeman, PhD Candidate, Carleton University—–

A male red turpentine beetle over the sound wave of a train of its interrupted chirps.

A male red turpentine beetle over the sound wave of a train of its interrupted chirps.

In April 2015, I coauthored a paper on what bark beetles are trying to say to each other when they interact with potential mates (1). No one knew for sure – since bark beetles, as their name implies, live under the bark, males could simply be announcing their presence as they wander the surface of the bark trying to join a mate in her gallery below, they could be advertising their species identity to make appropriate mate pairings or to say “Hey! I’m not a predator, let me in!” But the thing that always struck me is that many of the 5000+ species of bark beetles produce sounds, and their sounds are complex — they produce more than one kind of sound, and they can be multi-component. For a group of animals that already produces intricate attraction pheromones, why produce sound at all? Is it just for the sake of redundancy?

Image 2 Galleries

An elm bark beetle gallery located along the inner bark of an elm tree. The female digs the central (vertical) gallery and waits at the entrance of the gallery for a male to join her. Eventually, she will lay her eggs along the sides of the gallery and as the larvae hatch they will tunnel out causing the radiating (horizontal) galleries.

Before I go too far, perhaps I should go waayyyy back, and explain why I find insect sounds to be so interesting in the first place. I think that animal communication has always captured human attention and imagination as we consider both the beauty in animal sounds and what they mean. The dawn choir of birds; the roar of a lion; the squeak of a mouse. But, as Frank E. Lutz (1924) said: “probably the first definite sounds made by land-animals on this earth were made by insects. Before ever birds sang or even frogs croaked”. Insects led the way. Indeed, many insects have beautiful songs appreciated by people since antiquity when crickets were kept as domestic pets in ancient China (3) and cicadas were kept in cages in Greece and Rome (4), not unlike how we would keep a pet bird today. Apart from those musically talented insects, however, we need to remember that even in “the lowest insect tribes, many a rough, rasping note, though awakening no particular delight in us, serves as great a purpose as the more pleasant sounds” – F. C. Clark (1875). The trouble in research often comes down to finding out what that purpose is.

No group embodies this sentiment more than the beetles, an order with more ways of producing sound than any other, and yet with a very poor and widely neglected understanding of the purpose of those sounds (5). Bark beetles are an incredibly interesting group of beetles, who likely first caught our interest because of their destructiveness. The members of the genus Dendroctonus in particular have been hailed by forest entomologists as being “the most destructive enemies of the coniferous forests of North America” (6) and “the greatest tree killers known”(7).

One species in the genus that is no stranger to Canadians is the mountain pine beetle, and to put things in perspective, this beetle has impacted over 18 million hectares of forest in BC, and killed about 50% of the total volume of commercial lodgepole pine in only two decades. And, as I mentioned above, I personally find them particularly interesting because of their complex sounds which many of them invariably make as they approach the gallery of a potential mate and try to enter.

A male red turpentine beetle at the entrance to a female’s gallery. Female is visible blocking the gallery entrance.

A male red turpentine beetle at the entrance to a female’s gallery. The female is visible blocking the gallery entrance.

So, getting back on point, what do these sounds mean? In one species of the destructive Dendroctonus genus, the red turpentine beetle, I found that many aspects of a male’s courtship song correlated to his size. Since male size is linked to his ability to produce more offspring, this means that the male might be using his chirping as a way to honestly tell the female how fit he is. One important chirp variable related to size was the number of components per chirp. Chirps with just one component are termed “simple” while chirps with more than one component are termed “interrupted” and sound like a stutter in the chirp to the human ear. It turns out larger males have more components in their chirps. Also, and importantly, females always admitted a male into her gallery if he made interrupted chirps, while if he only made simple chirps, or was experimentally muted to produce no sound at all, he would only be successfully accepted approximately 60% of the time.

Even though I find the question of why an animal produces sound to be inherently interesting, someone who has unfortunately been a bark beetle victim and has seen local communities and businesses devastated by these insects might not care so much about the why and instead wonder what next? Now that we know that sounds may be important to the life history of bark beetles and that their chances of successful mating might depend to some extent on these signals, can this help us manage them? Probably! Acoustic technologies have helped control pest insects by using the sounds the pests rely on against them (8). This can mean anything ranging from detecting their presence to manipulating their behaviour. These kinds of technologies have not yet been applied in bark beetle management because we haven’t known enough about their sounds to develop strategies. Hopefully, as we begin to understand more about the purpose of their sounds, we can use acoustic technology to develop new targeted solutions to this serious problem.

Amanda Lindeman with a funnel trap (baited with pheromones and host tree kairomones to attract bark beetles) – photo credit: Michael Connolly.

Amanda Lindeman with a funnel trap (baited with pheromones and host tree kairomones to attract bark beetles) – photo credit: Michael Connolly.

References

(1) Lindeman, A.L. & Yack, J.E. (2015) What is the password? Female bark beetles (Scolytinae) grant males access to their galleries based on courtship song. Behav. Proc. 115:123-131

(2) Lutz, F.E. (1924) Insect sounds. Am. Mus. Nat. Hist. 50:333-372.

(3) Laufer, B. (1927) Insect Musicians and Cricket Champions of China. Field Museum of Natural History Leaflet

(4) Clark, F.C. (1875) The song of the cicada. Nat. 90(2):70-74.

(5) Wessel, A. (2005) Stridulation in the Coleoptera – An overview. Insect Sounds and Communication. 397-430

(6) Hopkins, A.D. (1909) Practical information on the Scolytid beetles of North American forests. I. Bark beetles of the genus USDA Bur. Entomol. Bull. 83. 169 pp.

(7) Wood, S.L. (1963) A revision of the bark beetle genus Dendroctonus Erichson (Coleoptera: Scolytidae). Great Basin Nat. 23:1-116.

(8) Mankin, R.W. et al. (2011) Perspective and promise: a century of insect acoustic detection and monitoring. Ent. 57(1):30-44.

4 Comments

Finding a rare robber fly in the Okanagan

IMG_1095

Vaseux Lake, a gorgeous body of water in a dry landscape.

Catherine Scott and I recently indulged in an almost unheard-of pleasure…A week long car camping trip to the Okanagan Valley! For those of you who don’t know, this is the area where the vast majority of BC wines originate (and tree fruit crops as well!). The South Okanagan and the Lower Similkameen Valleys, biologically speaking, are very similar to a desert, with many of the flora shared with northern parts of the Great Basin Desert.

The purpose of the trip was to have fun and seek out whatever cool life-forms we could, basically doing undirected fieldwork. With Catherine along, it meant that we sought out a LOT of spiders, but the Okanagan has some spectacular ones, so I was not complaining.

IMG_1098

Catherine under the rocky slopes off McIntyre Rd.

While soliciting info about good spots to check out, one of our Twitter contacts told us to be on the lookout for Efferia okanagana, a robber fly (Asilidae), recently described by Rob Cannings in The Canadian Entomologist.

IMG_1844

The bluffs are spectacular, with abundant scree slopes, which can produce something terrifyingly called a “debris torrent” at times.

On the 5th day of our trip, we were examining the awesome bluffs above the eastern shore of Vaseux Lake (thanks Nature Trust!), when we spotted our first robber. I managed to get a dorsal shot of this female, followed by a couple lateral shots.

IMG_1184

IMG_1192

We took these to a local restaurant with Wi-Fi, and compared them to the pictures of E. okanagana in the paper. They looked mighty similar! We went on Twitter to ask Dr. Cannings if these were indeed the Efferia we were looking for. They were!

This robber is at significant risk of extinction due to its small range in Canada (to date it has not been collected in Washington State). The South Okanagan grassland habitats where this and other iconic wildlife make their living are at risk due to widespread development and increased agricultural land use.  It is one of the earliest-flying robbers in the area, and photographs have documented it feeding on a wide variety of insect taxa. Like other large Efferia, they are not super difficult to approach, flying in bursts when disturbed and often coming to rest only metres away.

The very next day, coincidentally World Robber Fly Day (thanks to Erica McAlister of the Natural History Museum), we set out for the bluffs once more (they are an awesome habitat). We managed to find E. okanagana several more times, including a female feeding and a pair in copula!

IMG_1766

A female Efferia okanagana chows down on what looks like an ichneumonid.

IMG_1773

Eating requires a leg bath afterward.

IMG_1790

A pair of Efferia okanagana copulating! The male seems to partially cover the female’s eyes with his tarsi.

IMG_1801

Look at the odd position of the male’s abdomen!

IMG_1819

A male, note the bulbous rear end.

IMG_1822

Catherine after an awesome trip to the bluffs above Vaseux Lake.

Canadian Entomology Research Roundup: March 2015 – April 2015

As a graduate student, publishing a paper is a big deal.  After spending countless hours doing the research, slogging through the writing process, soliciting comments from co-authors, formatting the paper to meet journal guidelines, and dealing with reviewer comments, it’s nice to finally get that acceptance letter and know that your work is getting out there. The ESC Student Affairs Committee is happy to be posting a third roundup of papers authored by Canadian graduate students. Stay tuned to the ESC blog for some full length guest posts from some of the students below in the coming weeks!


Here’s what some entomology grad students in Canada have been up to recently (Articles published online in March and April, 2015):

Ecology and Evolution

All species are variable and are constantly evolving but we simply do not know how ecologically important this is. Nash Turley and colleagues at the University of Toronto Mississauga showed that genetic variation and evolution over the course of a month in a rapidly reproducing insect herbivore (green peach aphid) plays large roles in shaping the growth of plants they feed on. This suggests that genetic and ongoing evolutionary processes are important to consider when trying to understand the ecological effects of interactions among species. Article link

Top: Different genotypes of the green peach aphid; Bottom: A field experiment to test the effect of contemporary aphid evolution on plants

Top: Different genotypes of the green peach aphid; Bottom: A field experiment to test the effect of contemporary aphid evolution on plants (photos provided by Nash Turley)

Emsen Hamiduzzaman (University of Guelph) and colleagues compared viral infection rates between honey bee colonies with high and low rates of parasitic mite population growth. Article link

Many of the 5,000+ bark beetle species produce acoustic signals to communicate with the opposite sex, but the question that has never before been answered is, what are they trying to say? Amanda Lindeman and Jayne Yack (Carleton University) determined that these signals likely communicate the signaller’s fitness and are the proverbial password that encourages a female to step aside and grant a male admittance to her gallery. Article link

A male red turpentine beetle at the entrance to a female’s gallery. Female is visible blocking the gallery entrance

A male red turpentine beetle at the entrance to a female’s gallery. Female is visible blocking the gallery entrance (photo provided by Amanda Lindeman).

Mating experience matters! Joanna Konopka (Western Univeristy) found that Western bean cutworm moth females with more than one mating experience are ready to go again sooner, with a shorter refractory period and earlier onset of calling. Article link

‘Bee hotels’ are nesting habitat analogues of cavity-nesting bees and wasps. These devices are great research and monitoring tools, but more recently, concern for declining bee populations has led to their commercialization and conveyance as a means to ‘save the bees’ and house native pollinators. In a study conducted by Scott MacIvor (University of Toronto), 600 bee hotels were used to sample populations and found that 50% of colonizers were wasps and another 25% were exotic bees. Further, native bees were parasitized significantly more often than exotic bees. Many native bees use bee hotels but communicating the diversity of occupiers is needed to avoid ‘bee-washing’. Article link

Nestbox JSM

A ‘bee hotel’ nest box (photo provided by Scott MacIvor).

A molecular phylogeny of Taeniapterini (Stilt-legged flies, Micropezidae) created by Morgan Jackson and colleagues (University of Guelph) leads to a reclassification of the large genus Taeniaptera and the resurrection two genera. Article link

Aaron Hall (University of Toronto) and colleagues found that recreational boating pressure affects dragonfly/damselfly community composition and can impact conservation planning. Article link

Thomas Onuferko and colleages (Brock University) found that warmer climate leads to earlier nest initiation and lengthening of the flight season, but not to colony social organisation or queen-worker reproductive skew in a eusocial sweat bee. Article link

Gwylim Blackburn and colleagues at the University of British Columbia investigated the mating strategies of Habronattus americanus jumping spiders by documenting the movements, hunting activity, and social interactions of more than 100 individuals in their natural habitat. Males did not display directly to each other to compete for female mates. Instead, they traveled widely, eating nothing and displaying to every female they met. Females traveled significantly less than males and spent more time hunting. They also appeared picky when choosing mates, rejecting nearly every courting male that they encountered. These findings point to female mate choice as a potentially strong source of selection on male sexual displays. Article link

HamericanusMaleFront_Blackburn&Maddison

An adult male Habronattus americanus jumping spider travels through beach habitat in British Columbia, Canada. The bright coloration on his face and legs is presented to females during elaborate courtship dances. Photo credit: Sean McCann.

Agriculture

With no natural enemies in North America, 4-5 generations per year, and early- and late-emerging phenotypes, local swede midge populations can overwhelm established management tactics and cause significant damage to broccoli, cauliflower, and other Brassica crops.  Laboratory experiments by Braden Evans, and his colleagues at the University of Guelph, showed that native (Ontario) strains of the entomopathogenic nematodes Heterorhabditis bacteriophoraSteinernema carpocapsae and Steinernema feltiae,and the entomopathogenic fungus Metarhizium brunneum all infected swede midge larvae, pupae and pre-pupal cocoons and all three nematode species successfully reproduced inside swede midge larval hosts.  Field experiments showed some suppression of adult emergence from the soil, suggesting that entomopathogens may hold some potential as a swede midge management tactic for conventional and organic producers. Article link

Adult swede midge, Contarinia nasturtii. Photo credit: D.K.B. Cheung

Adult swede midge, Contarinia nasturtii. Photo credit: D.K.B. Cheung

Haley Catton (UBC-O and AAFC Lethbridge) and colleagues found out that a controversial biocontrol weevil with low host specificity rarely attacks non-target plants in the field. Article link

Rassol Bahreini (University of Manitoba) found that differential Varroa mite removal of different honey bee stocks was possible under low temperature. Article link

Lygus lineolaris is the dominant mirid species in soy, navy, and pinto bean fields in Manitoba, reports Tharshi Nagalingam at the University of Manitoba. Article link

Ground beetles aren’t just important generalist predators – they eat weed seeds! A new review by Sharavari Kulkami (University of Alberta) and colleagues here: Article link

Physiology and Genetics

Genes encoding the peritrophic matrix of Mamestra configurata (Lepidoptera: Noctuidae) were expressed in the midgut of feeding larvae and the results were used to update a model on the lepidopteran peritriphic membrane. This work was conducted in part by Umut Toprak at the University of Saskatchewan. Article link

Christina Hodson, Phineas Hamilton and colleagues (University of Victoria) co-authored a review article by on the major consequences of uniparental transmission of mitochondria, and an unusual case of extreme sex ratio distortion in a booklouse. Article link

Two genes from the mitochondria genome have potential as genetic markers for examining the population genetics and phylogeography of black legged ticks reports Chantal Krakowetz and colleagues at the University of Saskatchewan. Article link

Harvir Hans and Asad Lone (McMaster Unviersity) found hormetic agents like metformin may derive significant trade-offs with life extension in crickets, whereas health and longevity benefits may be obtained with less cost by agents like aspirin that regulate geroprotective pathways. Article link

Work conducted by Litza Coello Alvarado and colleagues from the Sinclair lab at Western, found that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold for Gryllus crickets. Article ink


We are continuing to help publicize graduate student publications to the wider entomological community through our Research Roundup.  Find the first two editions here and here. If you published an article recently and would like it featured, e-mail us at entsoccan.students@gmail.com.  You can also send us photos and short descriptions of your research, to appear in a later edition of the research roundup.

For regular updates on new Canadian entomological research, you can join the ESC Students Facebook page or follow us on Twitter @esc_students

Royal honours for Canadian student!

cows

Eloise Rowland, graduate of the Gries Lab of Simon Fraser University was recently recognized by the Royal Entomological Society for the best paper published in the journal Physiological Entomology in 2013 and 2014. This paper, part of Eloise’s MSc work, examines the role of sound in the sexual communication of the gypsy moth, Lymantria dispar.  It was coauthored by Peter Belton, Paul Schaefer and Gerhard Gries and is really a great contribution! Check it out!

Rowland E, Belton P, Schafer PW, Gries G. 2014. Intraspecific acoustic communication and mechanical sensitivity of the tympanal ear of the gypsy moth Lymantria dispar. Physiological Entomology 39(4): 331 – 340. DOI: 10.1111/phen.12080

elo ill

Costly colouration in a forest moth: the tale of a ten-year research project

As part of the Canadian Entomology Research roundup (the first two posts can be found here and here), we will be sharing more detailed posts from the grad students involved in the published research.

Below is a post from Jessica Ethier, sharing her research experience that spanned an undergraduate and PhD degree.


I just published a paper in Entomologia Experimentalis et Applicata. From start to finish, the work only took a decade.

Ten years ago, in the summer of 2005, I had just finished my first year as an undergraduate student at Concordia University. I had no plans yet for what I would do after graduating; really, I was just glad I’d survived that first year. But across the country, unbeknownst to me, traps were being set, insects were being collected, and by the time I was starting my second year of university here in Montreal, a student at the University of Alberta was busy pulling the wings off a bunch of dead moths.

A horrific sight to innocent insect passers-by.

A horrific sight to innocent insect passers-by.

That student was Kevin Lake. He was doing his undergraduate research project on the effects of population density on wing size and colour in the Malacosoma disstria moth with Maya Evenden and Brad Jones. Fast-forward one year to the fall semester of 2006, and I had now transformed (one might say, metamorphosed) into a seasoned third year undergrad dabbling in research for the very first time. In Emma Despland’s lab, I had a freezer-ful of more dead moths just waiting to be de-winged and studied, and (thanks to Maya and Emma) the protocols Kevin used for wing removal and colour scoring. One thing led to another, and before I knew it, it was 2009 and I had just fast-tracked to a PhD from a Master’s for my research on colour polymorphism and wing melanization in the M. disstria moth.

One of the aims of my graduate research as a whole was to try and figure out why there was always so much individual variation in colour within the genetically-based phenotypes. Emma and I developed an experiment for spring of 2010 to see if limiting dietary protein in the larval stage limited the expression of colour in the adult moth. I even had my very own undergraduate student for the project, Michael Gasse, to rear the insects, process the wings, and collect the colour data. But it wasn’t all rainbows and puppies and pulling wings off dead moths. First we had to get the insects from somewhere.

As luck would have it, there was a forest tent caterpillar outbreak about an hour away from the city that year (for some reason, the landowners – maple syrup producers – were not nearly as gleeful about this infestation of their sugar maple forests as all the members of the Despland lab were). So off we trooped in the middle of February, tree clippers, binoculars, and plastic lunchboxes in hand, to go collect as many egg masses as we could get our mitts on.

You thought the lunchboxes were for lunches? Photo by Alison Loader

You thought the lunchboxes were for lunches? Photo by Alison Loader

Then it was back to school, to spend most of April, May, and June in the sub-basement dungeon lab, slaves to the needs of the exponentially-growing, insatiable eating and pooping machines that we called our experimental subjects.

First instar M. disstria colonies in 30mL hatching cups with artificial diet. Those cups are basically the little plastic shot glasses you see at dollar stores. By the time they reach the final instar, the caterpillars are typically longer than those cups are tall. Photo by Alison Loader.

First instar M. disstria colonies in 30mL hatching cups with artificial diet. Those cups are basically the little plastic shot glasses you see at dollar stores. By the time they reach the final instar, the caterpillars are typically longer than those cups are tall. Photo by Alison Loader.

We all survived another research season, and Mike moved on to wing-pulling and colour scoring a few hundred moths. Time flew by, as time will do, but in 2012 I finally finished and submitted my article on nitrogen availability and wing melanization in the Malacosoma disstria moth!

It was rejected.

Undeterred, I chose another journal and submitted again. And again. And again. After the fourth or fifth rejection, I stopped resubmitting. Not because I was giving up, but because I had to write my thesis and graduate. Once that little matter was taken care of, I went back to my pesky paper. Looking at it with fresh eyes, I realized that the two sections I had divided my paper into just did not complement each other, despite being based on the same experiment. Then I had an epiphany. One of the reasons for forest tent caterpillars to suffer nitrogen limitation in real life is high population density.

And the rest, as they say, is history.

“Thrips” should die

By Dr. Tom Chapman, Memorial University

—-

I used scissor to cut my pant into short. A jarring opening sentence, I know. It is how I use to feel when someone dropped the “s” in “thrips”; it is a plural noun, don’t you know? If you see a solitary individual of these animals it is still referred to as a “thrips”.  I have been quick to correct people that have made this mistake. But lately on this issue, I have become tired of being the grammar pedant.

Art work done by Michael McLeish and Andrew Chaulk.

Art work done by Michael McLeish and Andrew Chaulk.

I don’t mean to be insulting to the readers of this blog, I am assuming you are knowledgeable and enthusiastic about insects, but just maybe you haven’t heard much of thrips. They are members of the insect Order Thysanoptera, and world wide there are at least 5000 species. They are small; in fact, they are typically the size and colour of the commas in this very sentence. These slithering punctuation marks do not commonly attract the attention of insect enthusiasts. However, for a small number of economically important species there is a large and vibrant community of researchers. These scientists routinely gather together to describe and discuss their research outcomes, with their next big event to be held in California (2015, Xth International Symposium on Thysanoptera & Tospoviruses).  Among the dominant applied work that will be presented at this meeting, and those of the past nine meetings, will also be more curiosity driven research.  This group of non-applied thrips-focused researchers could book a table at most restaurants. No more or less important, just a more private club. A club I joined as a PhD student.

Professor Bernard Crespi, in his early career, did a stint in Australia as a Research Associate. His motivation to travel to the antipodes was to answer the challenge, are there social thrips? The evolution of altruism (sub-fertility in part of a population) in the insects was and remains an outstanding conundrum for evolutionary theory. Theoretical attempts made in the sixties and seventies to explain these incidences of self-sacrificing castes appeared to also predict that somewhere within the diversity of thrips species we should also find sociality. There were no ready examples. Crespi had a hunch that social thrips would be found among the gall-inducing thrips on Australian Acacia.  In brief, he was right! Subsequently (Again, drastically shortening the story. Hey, I am not trying to write Crespi’s biography here.), Crespi took a position at Simon Fraser University where his research began with a focus on Australian social thrips. I was the first graduate student he recruited.

I will admit that the thrips played no part in attracting me to the program. Instead, it was Crespi’s strong scientific reputation and the chance to do field work in Australia that was the lure. However, it was several years of working in Canada with preserved and frozen specimens of thrips before I saw their full charm in their native habitat. I was hosted in Australia by Crespi’s major collaborator with the thrips work, Dr. Michael Schwarz, at Flinders University. In this prominent social insect lab I met three students with the same taxonomic focus as me.  Like Tigger in The Tigger Movie, I had started to fear that I was the only one. We connected quickly, and one of the pivotal bonding events happened during a trip to a Nursery outside the city of Adelaide. We needed native Australian plants for an experiment and the Nursery that could provide them was located inside a national park. On the way in we saw a sign warning visitors that they were not permitted to bring in plants or soil for fear of introducing pests. The list of pests included “thrip”. On our way out of the park, we stopped our truck; one of us jumped out with a permanent marker and added an “s”. Having scored one for thrips, we cheered and drove away.

It has been almost twenty years since we vandalized that sign (I hope that is longer then the crime’s statute of limitation). Since then I have continued research on social thrips, and I have given lectures in undergraduate and graduate classes, job interviews, conferences, public lectures and even dinner parties. Many people have engaged me after these events to express further interest in the work. If they said “thrip”, I corrected them. I thought educating people outweighed the potential risk of embarrassing them. My behaviour has certainly lost me a few acquaintances, some people have skin that is thin, but is there any evidence that I have been successful in educating people? I think the answer is no. A student of mine was interviewed a little while ago on the national radio science show, Quirks and Quarks. She corrected the host when he dropped the “s”. Two students and I submitted a paper to an entomological journal, and one reviewer pointed out to the editor the poor grammar of our presentation. The example they used to illustrate our incompetence was our failure to drop the “s”. I am co-writing a book chapter with a longtime friend and colleague, he edited my part by dropping a few of the “s”s. I give up. Not research or a fascination with thrips, just the “s” thing. It is now my opinion that the thrips research community is better off without this plural noun. To the uninitiated it sounds weird to use “thrips” in the singular, and to insist on its proper use is alienating. I don’t know how to change this. Who is in charge? How do you start a revolution? In the mean time, to those that naturally say “thrip” I am sorry I have offended you, let’s be friends.

Announcement – ESC-SEQ JAM 2015!

ESCQueJAM

The Entomological Society of Canada  and the Société d’entomologie du Québec are pleased to invite the entomological community to the 2015 Joint Annual Meeting in Montréal, Québec. The conference will take place from 8th to 11th November, and includes a range of symposia and associated events under the meeting’s theme : Entomology in the Anthropocene.

The plenary symposium is designed to provide a provocative overview of the challenges related to entomology in the Anthropocene. Plenary speakers include Dr. May Berenbaum (University of Illinois at Urbana-Champaign), Dr. Jessica Hellmann (University of Notre Dame), and Dr. Marcel Dicke (Wageningen University).

The Entomological Society of Canada and the Société d’Entomologie du Québec invite proposals for symposium sessions at the 2015 Joint Annual Meeting (JAM). We invite timely and well organised submissions from across the breadth of entomological science. We are particularly enthusiastic about symposia that are aligned with our 2015 meeting theme “Insects in the Anthropocene.” Deadline for symposium submission is the 28th February. See the webpage Call for symposia.

Sunday Nov. 8th, 7-10pm; Eat, drink and mingle with new and old friends at the ESC-ESS JAM Opening Reception at the Montréal Insectarium. Entomophagous appetizers will be served.

For more information, please visit our website, join us on Facebook and on Twitter using the hashtag #ESCJAM2015.

Exploring piophilid flies: taxonomic tools for forensic entomology

By Sabrina Rochefort, MSc student, McGill University.

Early in my undergraduate program at McGill University, I was looking for an opportunity to volunteer in a lab, where I could feed my need to learn and make new discoveries. That led me to Terry Wheeler’s lab; he was the teacher for my evolution class at that time.

I had a strong interest in evolution and paleontology, and was hoping to pursue that field. But Terry informed me that volunteering in his lab did not involve studying fossils, but instead studying tiny insects. Curious and willing to learn about insects, I decided to give it a try! At the Lyman Museum, I quickly discovered that entomology is a field of study with great opportunities and with an infinite number of projects. Besides studying for my degree, and working on weekends at Tim Hortons, I was volunteering up to 12 hours a week, between and after classes, pinning flies and identifying them. I couldn’t lie to myself anymore, I had developed a strong passion for entomology!

??????????

Identifying flies at the Lyman Museum. Photo by E. Vajda

 

Volunteering gradually transformed into a student job. It’s then that Terry introduced me to the fly family Piophilidae, commonly known as the Skipper Flies. I spent numerous hours familiarising myself with piophilids, reading literature, learning to identify them, their ecology, etc. All that knowledge that I acquired in entomology during my undergraduate studies gave me a great opportunity: the chance to pursue graduate studies. I am presently undertaking a Master’s project on the taxonomy and phylogeny of Piophilidae.

Image 2

Collecting piophilids on decaying mushrooms in the Yukon. Photo by E. Vajda

 

Now, let’s put a little less attention on my background and a little more on this wonderful family of flies and my project!

Piophilids are small to medium flies (3 to 9mm), which are abundant and diverse, especially in the northern hemisphere. To date, there are 82 described species worldwide. They mainly feed and reproduce on decaying organic matter. This family is of interest in several scientific domains such as forensic entomology (for their presence on carrion), in behavior (for their unique sexual selection strategies) and in biodiversity (for their interesting geographic distribution in the arctic). Several species are also pests in the food industry. The study of their taxonomy and phylogeny is essential for several reasons: to be able to identify specimens found in studies; to document the geographic distribution of species; to establish their phylogenetic relationships; and to learn more about their biology and ecology. The main objectives of my thesis are a taxonomic revision of the Nearctic Piophilidae and phylogenetic analysis of the genera worldwide.

Liopiophila varipes, a piophilid species commonly found on carrion. Photo by S. Rochefort

Liopiophila varipes, a piophilid species commonly found on carrion. Photo by S. Rochefort

A statement that is often repeated in our lab is that it is important for taxonomists and ecologists to collaborate, and that the outcomes of our taxonomic projects should be useful not only for taxonomists but also to other entomologists in other fields of expertise. And that is right! For taxonomy to make sense, it is essential that other researchers be able to understand it and use our work. This can be done by providing them with “working tools” such as identification keys which are simple and adapted to a specific need. It is for that reason that, as a side project to my thesis, I decided to collaborate with Marjolaine Giroux, from the Montreal Insectarium, Jade Savage from Bishop’s University and my supervisor Terry Wheeler on a publication and key to the Piophilidae species that may be found in forensic entomology studies in North America. That paper has just been published in the Canadian Journal of Arthropod identification. We reviewed some of the problems associated with identification of piophilids, and the need to develop a user-friendly key to the species. We wanted to create a key with lots of photographs, that was user-friendly and simple for non-specialists, and that would be published on-line and open access. Because of this, CJAI was the ideal journal for our paper.

Seeing this publication completed early in my graduate studies is a great accomplishment for me. It gave me the opportunity to share my knowledge and make taxonomy more accessible to students, amateur entomologists and researchers in the academic and scientific community. Undertaking a project in a less familiar field which is linked to your expertise is a very gratifying experience which I strongly encourage other students to try. From this experience, I acquired new skills and knowledge, I made connections with researchers in other fields of study and I was able to make more connections between my Master’s thesis and other subjects in entomology.

Reference

Rochefort, S., Giroux, M., Savage, J., Wheeler, T.A. 2015. Key to Forensically Important Piophilidae (Diptera) in the Nearctic Region. Canadian Journal of Arthropod Identification No. 27: January 22, 2015. Available online

7 Comments

Royal BC Museum insect curator position in danger, but you can make a difference

10048651725_c3dd122fd0_b

Only half of an estimated 35, 000 insects in BC have been recorded. A curator is urgently needed to address research priorities for BC’s most diverse group of organisms. Photo by Miles Zhang.

 

The following is a guest post by Professor Felix Sperling 

I’m always amazed when I see a well-established natural history museum that doesn’t have entomology curators. What are their administrators thinking? Insects form half of the known species diversity of our planet, a fundamental fact that too many people are unaware of. The ecological and even economic impact of all those species is overwhelming across all terrestrial and freshwater ecosystems, which are of course the habitats that we occupy ourselves. And there is still a shocking amount of insect biodiversity left undocumented or misunderstood, lying in wait to bite us, literally and figuratively, just when we are unprepared to deal with it.

6460412947_ba61243c48_b

Over 16, 000 RBCM Entomology specimens have been loaned out in the past 5 years alone. Photo: S. McCann.

 

But that is just the surface. The study of insects is an indispensable portal to understanding life on our planet and therefore to knowing ourselves and our place in this world. An appreciation of the exuberant diversity of insects is an essential foundation from which to build a fully connected and integrated appreciation of our surroundings, and to understanding the diversity and vitality of our interactions. That connectedness is what modern museums strive to capture and present. An entomology curator is the nexus for such connections, serving to do so very much more than just assembling specimens. An entomology curator is responsible for half of all known biological diversity, which also means curation of half of our knowledge about diversity, a human construct that is vulnerable to extinction just like a language is. And more than a purely cultural construct, such a curator maintains the chain that ties the dynamic memory of a human community to the material reality that allows the people of our planet to thrive. So how can a serious museum do without one, especially in a region where biodiversity is important to the self image of a people and insect biodiversity professionals are already so few in number?

 

So I was seriously puzzled to hear that the CEO of the Royal British Columbia Museum, Professor Jack Lohman, is seriously considering redirecting their entomology curator salary line, which was vacated when Dr. Rob Cannings retired in 2012. But I hear that there is still time for us all to have some input into the process, since Lohman has agreed to discuss the issue one last time on January 22nd, and has asked for a demonstration of support for such a position from outside the museum by that date.

1016207_10100677638569879_1925501145_n

Curatorial oversight leads to enhanced public engagement, fulfilling the core mission of a public museum. Photo by Miles Zhang.

 

 

I hope that as many of you as possible can write a short letter to Professor Lohman to point out the importance of entomology in the context of the Royal British Columbia Museum and the broader community that it is part of. Letters from a diversity of backgrounds and institutions would be most helpful. Some of you will have already heard about this via emails that circulated just before the holiday break, and here is an information sheet that may help you to make the case. You can get a better sense of Professor Lohman’s vision and background here.

Letters on institutional letterhead would be best, and can be sent to:

Prof. Jack Lohman,  Chief Executive Officer

Royal British Columbia Museum

675 Belleville St,

Victoria, BC V8W 9W2

JLohman@royalbcmuseum.bc.ca

 

And send a copy to:

Peter Ord: Vice President, Archives, Collections, and Knowledge

POrd@royalbcmuseum.bc.ca

 

My deepest appreciation to all of you who have read this far, and especially to any of you who can send off a letter, however brief. May you all have a happy, healthy and prosperous year in 2015!

IMG_6906

The Royal BC Museum houses over 600,000 entomological specimens. Photo: S. McCann.

 

 

A message from the ESC President

14424477386_fec5b07470_o

The following is by Dr. Staffan Lindgren, ESC President

Christmas has come and gone and it is now closing in on the end of 2014. Most of us are busy with family and friends, and although winter seems to be spotty across the country (it is plus 3 oC in Prince George as I write this), our insect friends are mostly hibernating – at least those that don’t share our homes (like the pesky fruit flies and other small flies from my wife’s indoor worm compost I am constantly batting!) It is much more than just the end of another year for the Entomological Society of Canada, however. Over the past few years, largely in response to an increasingly challenging fiscal environment, the ESC is continuing the transitioning into a new era. Many of our colleagues have put in a lot of their time to make this happen, and I want to highlight a few of them here.

The transition started in 2011 with the move of The Canadian Entomologist from NRC Press to Cambridge University Press. This should restore TCE to its former glory, because we no longer have page charges, and colour plates are also free of charge. The hard work of former Editors-in-Chief Robb Bennett and Chris Buddle, as well as current EiC Kevin Floate and the Publications Committee made this move possible. Another big change has been our transition to the new Canada Not-for-profit Corporations Act. I want to thank Alec McClay, whose diligence alerted us to the requirement for transitioning in a timely manner. Thanks to the invaluable help from the painstaking and detailed work by Gary Gibson and Bill Riel the ESC made a smooth transition and has been operating under this legislation for some time now. As is often the case, there are unforeseen complications with these types of bureaucratic exercises, and one of them is that we have to change the end of our fiscal year to be in compliance with the legislation.

The change that will be most tangible for members happened this fall. At the Annual General Meeting of the ESC on September 30, 2014, in Saskatoon, attending members voted unanimously in favour of contracting office and some other services to Strauss Event & Association Management. After negotiating terms, a contract was signed at the end of October, and as members of the ESC have already noted, communication with members is now handled by Strauss on behalf of the ESC. This means that we are no longer located in Ottawa, but in Winnipeg.

Over the next few months, you will see some tangible evidence of the move. It is important that we get your feedback to refine some of the new features that will be available to us. A major consequence of the change is that the headquarters building in Ottawa will be sold, which will provide some much needed capital to help us get through potential rough patches in the future. It also means that Derna Lisi, ESC’s office manager for the past eight plus years, has moved on to another job, so when you contact the ESC from now on, your first point of contact will be our partners at Strauss. In addition to the executives of the past few years (including Peter Mason, Michel Cusson, Rose DeClerck-Floate, and Rebecca Hallett), Bernie Roitberg, Scott Brooks, and Christopher Dufault among others have been instrumental in moving these issues along, and we owe them all a debt of gratitude for their efforts.

We are looking forward to continuing the traditions of the ESC into the next era, but we also hope that we can strengthen ESC. That can only be done with help from members. You can do your part by remaining a member, encouraging non-member colleagues to join, participating in meetings at the regional and national level, and volunteering for service on one of the many committees or even as a member on the Governing Board. I wish you all a wonderful 2015.

466129697_bc8d1194a5_o

1 Comment

Low-cost, effective bed bug pheromone found!

AFPMB bedbug

Bedbug feeding on human host. Photo courtesy of Armed Forces Pest Management Board. Used under a CC BY-NC-ND 2.0 licence

Researchers at Simon Fraser University have just published a paper describing a bedbug pheromone blend which includes three new volatiles and a surprising arrestant: histamine!

Regine Gries, along with colleagues from SFU’s Chemistry and Biological Sciences Departments have been working on pheromone chemistry of these pervasive and damaging pests for years. Regine has led the effort, maintaining bedbug colonies and devising many ways of extracting and testing the compounds. By analysing headpace volatiles of bedbug-soiled paper, they were able to identify three new volatile pheromone components: dimethyl disulphide, dimethyl trisulfide and 2-hexanone. These, in addition to the previously-identified alarm pheromone components (E)-2-hexenal and (E)-2-octenal, attract bed bugs to experimental shelter baits placed in study arenas.

AFPMB bedbug3

Photo by Graham Snodgrass, via Armed Forces Pest Management Board. Used under a CC BY-NC-ND 2.0 licence

 

The identification of histamine as an arrestant pheromone is quite novel, as this compound is not volatile at all. The free base of this common amine hormone is present in bed bug exuviae, and when applied to paper shelters causes bed bugs to remain in place. Bed bugs  seem to use histamine as a signal that the shelter is a safe resting site. This is so effective, that experimental traps with only histamine catch more bedbugs than traps coated with the traditional sticky trap coating. Bed bugs are so reluctant to leave the traps with histamine that they remain in place even when the trap is picked up.

These findings will likely translate into more effective monitoring and control tools for these difficult-to-eradicate pests.

AFPMB bedbug2

Photo by Graham Snodgrass, via Armed Forces Pest Management Board. Used under a CC BY-NC-ND 2.0 licence

 

 

 

 

1 Comment

Invasive ants march on the West Coast

IMG_0279Invasive ants are generally a phenomenon of warmer climates. Argentine ants, red imported fire ants, and electric ants are all major economic problems in places like Florida, New Caledonia, and Australia. But what is to stop European and Asian ant species from damaging invasions of Canada? It turns out, not much.

Ken Naumann and Rob Higgins, entomologists working on ants in BC, have just published a paper in The Canadian Entomologist on the spread of Myrmica rubra, the so called European fire ant in coastal BC.

IMG_4585

In many ways, European fire ants are typical Myrmica, engaged in scavenging, predation and aphid tending. They distinguish themselves in their high colony density and proclivity to sting.

 

 

This insect was first detected almost a century ago in Boston, and has since spread to many areas of eastern North America. It has not generally been problematic, but in the past 10-15 years, reports of high colony densities and spread have been increasing. These small red ants are superficially similar to other native Myrmica, but in occupied ground they reach staggeringly high colony densities of up to 4 nests/square metre. They become known to anyone walking on their turf due to their painful stinging attacks in defense of their nests. In areas with large numbers of colonies, activities as innocuous as sitting on the grass can become impossible.

IMG_9295

Despite her beautiful wings, this Myrmica rubra queen will not fly, a strange trait that is ubiquitous across the North American range for this species.

One factor limiting the spread of these ants is that the queens do not seem to be able to fly. That trait has been lost in their transition to their new home, although the males still engage in winged dispersal. These ants are instead spreading through nest budding where already established and through movement of infested soil and wood into new areas.

In the paper, Naumann and Higgins report staggeringly high numbers of EFA captures in pitfall trapping in infested areas, compared to moderate numbers of native ants in uninfested habitats. The numbers of Myrmica rubra exceeded the numbers of all native ants by 10 to 1300 times!

IMG_4543

In infested areas, Myrmica rubra is the only ant to be found.

 

More worryingly, Myrmica rubra seems to outcompete and eliminate all other native ants, and in infested areas, very few native ants can be found. In addition, other litter arthropods seem to be reduced in infested areas as well, though the reduction in species richness indices is mostly attributable to the loss of the native ants.

British Columbia, as a biologically diverse and relatively warm province with high levels of oceanic trade, may be the testing ground for biological invasions from ants. A second introduced Myrmica, Myrmica specioides, is also mentioned in the paper. Unlike M. rubra, Myrmica specioides queens retain their flight capabilities, and thus there is no feasible way of stopping their spread.

The ants are marching in BC, and entomologists are well advised to keep up with their movements!

myrmica comparison widescreen

Superficially similar, Myrmica specioides (left) can be distinguished in the field from M. rubra (right) by the sharp bend at the base of the scape. M. rubra has a gently curving scape instead.

 

IMG_5089

Nowhere to go but up: Myrmica specioides queens are quite capable of flight!

 

 

 

The last of the yellowjackets?

IMG_4087

 

On Friday, while walking to work I found this male wasp, cold and still on the pavement. This was a male western yellowjacket, Vespula pensylvanica, and he was in rough shape. Even here in Vancouver, wintry weather comes this time of year, and we have had freezing nights for almost a week.

IMG_4125

Males are easy to recognize, as they have long, 13 segmented antennae, and a long gaster with 7 apparent segments. Females have 6 segments on the gaster, and 12-segmented antennae. 

IMG_4056

With the freezing weather we have had, this male was not really able to fly, so he was cooperative for some photos.

IMG_4068

I have seen male yellowjackets later in the year than this, usually when their nest is within a heated home.

IMG_4098

Further south, western yellowjackets have year-round colonies, with multiple queens, but here in Canada they generally conform to the single-foundress colony mode, with a single queen starting a colony in the spring, and dying off in the winter after producing males and new queens.

IMG_4094

After this session, I found a nice sunstruck patch of moss, and laid down some honey (which I keep in a vial for ant photography) and let him have a last meal in the sun before the cold of night came to end his life.

 

 

 

Spiders with an identity crisis: a new taxonomy paper

The following is a guest post by Terry Wheeler, from the Lyman  Entomological Museum at McGill University. It is re-posted from the Lyman Museum Blog, where it originally appeared. 

Two wolf spiders, whose names are Pardosa lapponica and Pardosa concinna, run across open ground all over northern Canada. Here’s the problem: these two species of spiders live in a lot of the same places, and they look very similar. Katie Sim, a grad student working with Chris Buddle and me here at McGill, asked the obvious question: are these spiders really separate species? Katie’s insights on that question were just published in the journal Zootaxa.

As taxonomists, we can use multiple kinds of evidence to determine species limits. This includes things like morphology, genetic sequence data, geographic distribution, and ecology. These two species were originally described from widely separated areas: P. lapponica from Lapland, and P. concinna from Colorado. But since then they’ve been found in many more sites and we now know that their ranges overlap in northern North America.

The other long-accepted way of distinguishing between these two species was a small morphological difference between their reproductive structures (many closely related arthropods look very similar externally, but if there are differences, we often see them in the genitalia. “Why?” is a topic for another post).

As Katie collected spiders as part of our Northern Biodiversity Program fieldwork in northern Canada, she realized that the morphological differences between the two species weren’t that clear-cut, once you take variation into account. Based on careful measurements of specimens from all across the north, Katie found overlap in almost all morphological characters, even genitalic characters that had been used in the past. There was only one small piece of the complex male mating structures (the terminal apophysis, for the spider fans reading along) that seemed to hold up as a difference between the species (and only the males, obviously). Question marks started to appear.

sim-et-al-fig-3

Katie’s next step was to delve into the genetic differences between the two species. Even though species can look very similar externally, DNA sequence data sometimes uncovers fine differences between them. This is especially helpful with closely related, or recently diverged species. Katie used the DNA barcode, a section of the mitochondrial gene CO1, which has proven pretty useful for distinguishing animal species. And the DNA results showed some interesting patterns, some of which were unexpected.

sim-et-al-fig-5

The figure above is a haplotype network. Each circle is a little island of genetic similarity, connected to other islands by the lines. We’d expect different species to be part of separate “islands”, but that didn’t happen here. Pardosa lapponica (in light gray) and P. concinna(in black) sometimes share the same haplotype, and each of the two has multiple haplotypes. That means there’s more genetic variation within a “species” than between them. But wait! There’s more!

After a suggestion from one of the reviewers on an earlier version of the paper (this back-and-forth of suggestions is one of the strengths of peer-reviewed science), Katie looked at the CO1 barcode sequences of P. lapponica specimens from northern Europe, where it was originally described. Unexpectedly, the Russian specimens (the dark gray circles without numbers in the figure above) were genetically distinct, by a good margin, from the North American specimens of P. lapponica.

So what does this all mean, taxonomically? First, the spider we call “Pardosa lapponica” in North America seems not to be the same species as “Pardosa lapponica” from northern Europe (which “owns” the name, because it was described from there first). Our North American P. lapponica may, in fact, be the same species as the spider we’ve been callingPardosa concinna, but before we can make the final decision on that, it would be necessary to study additional North American specimens, especially from Colorado (the “type locality”, or collection site of the original P. concinna), to confirm this.

And that’s how taxonomy often works: good, careful research will answer one question, and in the process, new questions pop up. Sometimes, you think you know a spider, and sometimes, you realize you really don’t.

Reference

Sim, K.A., C.M. Buddle, and T.A. Wheeler. 2014. Species boundaries of Pardosa concinna and P. lapponica (Araneae: Lycosidae) in the northern Nearctic: morphology and DNA barcodes. Zootaxa: 3884: 169–178.

ESC Blog Classifieds – U Winnipeg MSc Opportunity Rearing Endangered Butterflies

MSc Graduate Student Opportunity in the Department of Biology, University of Winnipeg

Project title: Developing a laboratory rearing technique for the endangered Poweshiek skipperling and assessing the feasibility of introduction into tall grass prairie habitats in Manitoba.

Objectives: The Poweshiek skipperling (Oarisma poweshiek) is an Endangered butterfly species that is in critical danger of becoming extinct. Less than 500 individuals remain in the wild and the grasslands of southeastern Manitoba represent one of the species’ last strongholds. The species inhabits remnant patches of tall-grass prairie and in the past 10 years has greatly declined across its historical range. Working at both the Assiniboine Park Zoo in Winnipeg and the University of Winnipeg, the student will help develop laboratory rearing techniques and to determine the feasibility of reintroducing the Poweshiek skipperling into tall grass prairie sites where it has been extirpated or new potential prairie habitat. The student will study life history factors (such as mortality and survivorship of various development stages) and evaluate potential tall grass prairie sites for reintroduction. This study is in coordination with the University of Winnipeg, Assiniboine Park Zoo, and Nature Conservancy of Canada (NCC).

See flyer for further details and how to apply.

ESC Blog Classifieds: Greenhouse Entomologist (Beneficial Insects)

Great Lakes Greenhouses (Leamington, ON) is seeking a full-time entomologist to aid in the development and implementation of rearing protocols for the production of beneficial insects used in the greenhouse industry. Knowledge and experience with experimental design, statistical analysis, beneficial insect propagation and maintenance, and the ability to perform independent research are all necessary to succeed in this position.

Great Lakes Greenhouses has been a family owned and operated hydroponic vegetable grower in Leamington, Ontario since 1983. Our original 2-1/2 acre greenhouse operation has evolved into an environmentally friendly 90 acre state of the art facility that propagates, grows, packages and ships more Long English seedless cucumbers on a year round basis than any other greenhouse operation in North America. Due to our commodity share hold in the market and our Primus Certified Food Safety designation for both our greenhouse and packing operations, our cucumbers have reached most major retailers’ shelves across the USA and Canada. 

See full job ad for more details, and send resumes to James Tetreault (james@greatlakesg.com) to apply.

ESC Blog Classifieds – MSc Positions at U Manitoba

Dr. Alejandro Costamagna, along with Dr. Harry Sapirstein, are advertising 2 MSc opportunities in agricultural entomology in the Department of Entomology at the University of Manitoba:

Effects of Midge Damage on Gluten Strength of Resistant and Susceptible Wheat Genotypes

Determining the role of crop and non-crop habitats to provide sustainable aphid suppression in soybeans

Deadline for applications is March 15, 2017. Contact Dr. Costamagna for more information or to apply.

ESC Blog Classifieds – Student Field Research Assistants (Horticulture Crops, OMAFRA)

“Are you serious about making your mark, getting hands-on work experience and learning more about careers in the Ontario Public Service? These positions at the Ontario Ministry of Agriculture, Food and Rural Affairs in Guelph, Ontario will provide an excellent opportunity for those interested in a career in horticulture crop production, pest management, research or the agricultural service sector. Crops may include fruits, vegetables and ornamentals. These positions will provide the opportunity to learn about horticulture crop production, plant diseases, insect pests, integrated pest management (IPM) and agronomy in the horticulture crop sectors within the province. Training will be provided on research methods, technology transfer and working in the public sector.”

Six temporary positions based in Guelph, Ontario for up to 18 weeks are available. Closing date is February 2, 2017. See flyer for more details and how to apply.